Différences entre les pages « Bon état écologique » et « La diversité spécifique, l'assurance de la fonctionnalité »

 
 
Ligne 1 : Ligne 1 :
 
{{Tuto Details
 
{{Tuto Details
|Main_Picture=Bon__tat__cologique_Bon_tat_cologique_Image-principale.png
+
|Main_Picture=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__La_diversit_sp_cifique_l_assurance_de_la_fonctionnalit_Sans_titre.png
 
|Licences=Attribution (CC-BY)
 
|Licences=Attribution (CC-BY)
|Description=Cette expérience permet de faire la synthèse des expériences précédentes sur le bon état écologique des cours d’eau.
+
|Description=Les espèces, dans l’écosystème dans lequel elles vivent, vont assurer des rôles et des fonctions qui sont propres à chacune d’entre elles. Plusieurs espèces, dans un même écosystème, vont assurer des rôles ou des fonctions proches. Or, si la diversité spécifique (en nombre d’espèces) diminue dans un écosystème, une partie des rôles ou des fonctionnalités ne vont plus, au moins en partie, avoir lieu normalement.
 
|Disciplines scientifiques=Life Sciences
 
|Disciplines scientifiques=Life Sciences
 
|Difficulty=Technical
 
|Difficulty=Technical
|Duration=30
+
|Duration=35
 
|Duration-type=minute(s)
 
|Duration-type=minute(s)
 
|Tags=Agence de l'eau, bon état, 20000 lieues
 
|Tags=Agence de l'eau, bon état, 20000 lieues
 
}}
 
}}
 
{{Introduction
 
{{Introduction
|Introduction=Cette expérience fait le lien et la synthèse des expériences précédentes sur le bon état écologique des cours d’eau.
+
|Introduction=Cette expérience est une illustration de l'une des raisons pour lesquelles la diversité en termes de nombre d’espèce est importante dans les écosystèmes.
  
Elle prend la forme d’un diagramme à compléter et de schémas à colorier.
+
En effet, dans les écosystèmes, chaque espèce assure, lors de son cycle de vie, un certain nombre de fonctions.
  
 +
Par exemple, une espèce A de larve d’insecte aquatique consomme des champignons qui poussent sur des feuilles d’arbres tombées dans l’eau, ce qui découpe les feuilles en morceaux de grande taille.
  
Cette fiche expérience s’intègre dans le Parcours 3 : Solutions et techniques d'étude.  Elle est réalisée dans le cadre d'un partenariat avec l'agence de l'eau Loire - Bretagne. La fiche mise en page est disponible en pdf et téléchargeable [https://www.wikidebrouillard.org/images/2/2a/Bon_tat_cologique_Fiche-bon-etat-ecologique.pdf ici].
+
Une espèce B consomme les champignons sur les morceaux de feuilles de grande taille, ce qui les découpe à nouveau, en morceaux plus petits.
 +
 
 +
Et ainsi de suite.
 +
 
 +
 
 +
Certaines espèces assurent, en terme écosystémique, des fonctions relativement proches.
 +
 
 +
Par exemple, une espèce A’ peut aussi consommer des champignons sur des feuilles de taille similaire à l’espèce A et les découper aussi en morceaux grossiers.
 +
 
 +
Lorsque qu’un écosystème est perturbé, certaines espèces peuvent disparaître.
 +
 
 +
 
 +
Lors de cette expérience, nous allons comprendre pourquoi il existe un risque de voir certaines fonctions ne plus être assurées lorsque des perturbations touchent un écosystème et suivant la diversité spécifique.
 +
 
 +
 
 +
Ici pour simplifier la compréhension, nous avons limité la notion des fonctions assurées par les espèces au sein des écosystèmes à la notion de régime alimentaire.
 +
 
 +
De la même façon, les espèces sont en fait des groupes taxonomiques importants (souvent la classe) et sont là seulement à titre illustratif.
 +
 
 +
 
 +
Cette fiche expérience s’intègre dans le Parcours 3 : Solutions et techniques d'étude.  Elle est réalisée dans le cadre d'un partenariat avec l'agence de l'eau Loire - Bretagne. La fiche mise en page est disponible en pdf et téléchargeable [https://www.wikidebrouillard.org/images/e/e3/La_diversit_sp_cifique_l_assurance_de_la_fonctionnalit_Fiche-diversite-fonctionnelle.pdf ici].
 
}}
 
}}
 
{{Materials
 
{{Materials
 
|ItemList={{ItemList
 
|ItemList={{ItemList
|Item=Pâte à fixe
+
|Item=Ciseaux
 
}}{{ItemList
 
}}{{ItemList
|Item=Elastique
+
|Item=Tableau velleda
}}{{ItemList
+
}}
|Item=Enveloppe
 
}}{{ItemList
 
|Item=Marqueur effaçable
 
}}{{ItemList}}
 
 
|Tuto_Attachments={{Tuto Attachments
 
|Tuto_Attachments={{Tuto Attachments
|Attachment=Bon__tat__cologique_Fiche-bon-etat-ecologique.pdf
+
|Attachment=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__Fiche-diversite-fonctionnelle.pdf
}}{{Tuto Attachments
 
|Attachment=Bon__tat__cologique_Bon_tat_cologique_Sh_ma1-2.pdf
 
 
}}{{Tuto Attachments
 
}}{{Tuto Attachments
|Attachment=Bon_tat_cologique_Bon_tat_cologique_Sh_ma1-Dessin-2.odg
+
|Attachment=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle.pdf
 
}}
 
}}
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Impression des différents documents
+
|Step_Title=Préparer les cartes
|Step_Content=La première étape consiste à préparer les supports d’animation :
+
|Step_Content=Description des tâches à réaliser :
  
*Commencer par télécharger les différents fichiers en cliquant sur les liens suivants (deux formats au choix pour le même document) :
+
*Télécharger les fichiers en cliquant sur le lien suivant : [https://www.wikidebrouillard.org/images/0/01/La_diversit_sp_cifique_l_assurance_de_la_fonctionnalit_19b_Cartes-diversite-fonctionnelle.pdf Fichier en version PDF];
**[https://www.wikidebrouillard.org/images/f/f5/Bon_tat_cologique_Bon_tat_cologique_Sh_ma1-2.pdf Fichier en version PDF]
+
*Imprimer les cartes ;
**[https://www.wikidebrouillard.org/images/2/21/Bon_tat_cologique_Bon_tat_cologique_Sh_ma1-Dessin-2.odg Fichier en version ODG]
+
*Découper les différentes cartes ;
*Les imprimer ;
+
*Faire deux lots :
*Découper les définitions et les titres (suivre les pointillés) ;
+
**Un lot A avec la richesse spécifique importante ;
*Plastifier éventuellement les définitions et les titres.
+
**Un lot B avec la richesse spécifique faible.
|Step_Picture_00=Bon__tat__cologique_Sans_nom_1.jpg
+
|Step_Picture_00=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-01.png
|Step_Picture_01=Bon__tat__cologique_Sans_nom_2.jpg
+
|Step_Picture_01=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-02.png
|Step_Picture_02=Bon__tat__cologique_Sans_nom_3.jpg
+
}}
|Step_Picture_03=Bon__tat__cologique_Sans_nom_4.jpg
+
{{Tuto Step
|Step_Picture_04=Bon__tat__cologique_Sans_nom_5.jpg
+
|Step_Title=Distribuer le jeu de carte A
 +
|Step_Content=Distribuer face cachée les cartes du lot A. L’idéal est d’avoir au minimum une dizaine de cartes.
 +
|Step_Picture_00=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-01.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Complétion du diagramme 1/2
+
|Step_Title=Révéler les cartes
|Step_Content=Sous forme de discussion, commencer par :
+
|Step_Content=Chaque participant.e révèle sa ou ses cartes.
 +
 
 +
 
 +
Il.Elle présente ensuite l’organisme figurant sur sa carte, son régime alimentaire et le numéro de la perturbation à laquelle ce dernier est sensible.
 +
 
 +
 
 +
Voici la liste des régimes alimentaires et leur définition :
 +
 
 +
- Déchiqueteur. Une fois tombées à l’eau, les feuilles d’arbres sont colonisées par des champignons microscopiques (hyphomycètes). Certains macro-invertébrés coupent en morceaux les feuilles pour consommer les champignons ;
 +
 
 +
- Prédateur. Il s’agit de macro-invertébrés qui se nourrissent d’autres macro-invertébrés en les attrapant vivants ;
 +
 
 +
-  Racleur. Les organismes ayant ce type de régime alimentaire mangent les micro-organismes qui poussent sur les éléments présents dans le cours d’eau (pierres, morceaux de bois…). Ces micro-organismes forment le plus souvent une couche transparente d’aspect gélatineux, nommée biofilm ;
  
*Associer les quatre définitions à leurs titres. Pour cela, faire le lien avec les autres expériences réalisées précédemment ;
+
- Piqueur. Il s'agit de macro-invertébrés qui se nourrissent en piquant, soit les plantes aquatiques pour aspirer de leur sève, soit les animaux afin d’aspirer leurs fluides. Dans les deux cas, l’animal, de la même façon que la plante, peut survivre à la piqûre (si l’intensité, la fréquence et l’état sanitaire de la plante ou de l’animal le permettent). Il s’agit donc d’un comportement différent de la prédation.
*Positionner le titre et sa définition sur le diagramme « Schéma représentant les quatre catégories de critères permettant de définir et d’évaluer l’état des cours d’eau ».
+
 
|Step_Picture_00=Bon__tat__cologique_Sans_nom_1.jpg
+
 
|Step_Picture_01=Bon__tat__cologique_Sans_nom_2.jpg
+
Ensuite,  il convient de regarder quels sont les régimes alimentaires présents dans le groupe et combien d’espèces partagent le même régime alimentaire.
 +
 
 +
 
 +
Quatre perturbations figurent sur les cartes (A, B, C et D). Ces quatre perturbations sont théoriques. Il est possible de donner des exemples de perturbations réelles pour illustrer son propos :
 +
 
 +
 
 +
- Des perturbations de débit (étiage important, prélèvements d’eau important, ou au contraire pluie torrentielle) ;
 +
 
 +
- Des perturbations des habitats (prélèvement des granulats, arrachages des herbiers, curage du cours d’eau, retrait de la litière, arasement de la ripisylve…)
 +
 
 +
- Des pollutions (rejet agricole organique, épandage dans un champ à proximité de pesticides, d'engrais, etc.) ;
 +
 
 +
- Des modifications du cours d’eau (talutage, creusement du lit mineur, modification du chenal d’étiage, calibrage…).
 +
 
 +
 
 +
Voir « Pistes pour animer l’expérience ».
 +
|Step_Picture_00=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-01.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Complétion du diagramme 2/2
+
|Step_Title=Définir et appliquer les perturbations
|Step_Content=Voici le diagramme complété.
+
|Step_Content=L’animateur.rice choisit une des quatre perturbations (1, 2, 3 ou 4).
|Step_Picture_00=Bon__tat__cologique_Sans_nom_6.jpg
+
 
 +
 
 +
Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.
 +
 
 +
 
 +
Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.
 +
 
 +
L’animateur.rice choisit une deuxième des quatre perturbations (1, 2, 3 ou 4).
 +
 
 +
Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.
 +
 
 +
 
 +
Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.
 +
 
 +
 
 +
Discuter avec les participant.e.s de l’effet des perturbations sur ce groupe d’espèces.
 +
|Step_Picture_00=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-01.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Utiliser le schéma de décision de la note
+
|Step_Title=Distribuer le jeu de carte B
|Step_Content=Utiliser la page une du document « Schéma décrivant la façon dont la classe de qualité est déterminée pour les cours d’eau » afin de comprendre de quelle façon fonctionne la note donnée aux écosystèmes.
+
|Step_Content=Distribuer face cachée les cartes du lot B. L’idéal est d’avoir au minimum une dizaine de cartes.
 +
|Step_Picture_00=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-02.png
 +
}}
 +
{{Tuto Step
 +
|Step_Title=Révéler les cartes
 +
|Step_Content=Chaque participant.e révèle sa ou ses cartes, puis présente l’organisme figurant sur  chacune de ses cartes son régime alimentaire et le numéro de la perturbation à laquelle ce dernier est sensible.
  
  
- Commencer par repérer qu’il suffit d’une note dégradée à un sous-critère pour que la note globale soit dégradée ;
+
Comparer avec la situation précédente en termes de nombre d’espèces.
 +
|Step_Picture_00=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-02.png
 +
}}
 +
{{Tuto Step
 +
|Step_Title=Définir et appliquer les perturbations
 +
|Step_Content=L’animateur.rice choisit une des quatre perturbations (1, 2, 3 ou 4).
  
- Sur la page 2, déterminer la classe globale du cours d’eau ;
 
  
- Sur la page 3, déterminer les sous-classes puis la classe globale du cours d’eau.
+
Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.
|Step_Picture_00=Bon__tat__cologique_Sans_nom_3.jpg
+
 
|Step_Picture_01=Bon__tat__cologique_Sans_nom_4.jpg
+
 
|Step_Picture_02=Bon__tat__cologique_Sans_nom_5.jpg
+
Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.
 +
 
 +
 
 +
L’animateur-rice choisit une deuxième des quatre perturbations (1, 2, 3 ou 4).
 +
 
 +
Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.
 +
 
 +
 
 +
Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.
 +
 
 +
 
 +
Discuter avec les participant.e.s de l’effet des perturbations sur ce groupe d’espèces.
 +
|Step_Picture_00=La_diversit__sp_cifique__l_assurance_de_la_fonctionnalit__19b_Cartes-diversite-fonctionnelle-02.png
 
}}
 
}}
 
{{Notes
 
{{Notes
|Observations=L’assemblage des différentes définitions permet de comprendre la notion de bon état écologique.
+
|Observations=Faire la comparaison entre les deux situations :
|Avertissement=Il faut avoir fait les différentes expériences préalables afin de bien appréhender cette notion.
 
|Explanations=Le bon état écologique se définit à l’aide des différents sous-critères :
 
  
- Critères biologiques (présence/absence d’organismes végétaux et animaux considérés comme bioindicateurs) ;
+
- Quel est le groupe (A ou B) ayant le mieux résisté ? ;
  
- Critères hydromorphologiques (naturalité/artificialisation du milieu et des processus qui y sont à l’œuvre) ;
+
- Quel a été l’effet de la première perturbation sur le groupe A ? ;
  
- Critères physico-chimiques (toxicologie…) ;
+
- Sur le groupe B ? ;
  
- Indices de qualité tels que l’indice biologique ou les indices basés sur les macro-invertébrés.
+
- Quel a été l’effet de la deuxième perturbation sur le groupe A ? ;
  
 +
- Sur le groupe B ?
  
Pour chaque masse d’eau, l’état écologique est qualifié selon cinq classes : très bon, bon, moyen, médiocre et mauvais.
 
  
Dans tous les cas, il est caractérisé par l’écart aux conditions de référence. Ce référent correspond à la classe « état très bon » attribué lorsque les conditions sont représentatives d’une eau de surface pas ou très peu influencée par l’activité humaine.
+
Une fois les conclusions tirées, il est possible de refaire la manipulation afin de vérifier les conclusions.
 +
|Avertissement=Pour que cette expérience fonctionne, il faut bien mélanger les cartes et bien prendre le temps de a discussion avec les participant.e.s.
 +
|Explanations=Dans le premier groupe, le nombre d’espèces est important. À chaque fois, quatre espèces différentes possèdent le même régime alimentaire. Lorsqu’une perturbation se produit dans l’écosystème, certaines espèces vont disparaître, mais comme d’autres partagent le même régime alimentaire, il y a peu de risques que celles-ci disparaissent de l’écosystème.
  
  
Les signes d’impact des activités humaines sont visibles dans les différents sous-critères :
+
Dans le deuxième groupe, le nombre d’espèces est faible. Ici seules deux espèces possèdent le même régime alimentaire. Lorsqu’une perturbation se produit dans le milieu, il y a un risque important qu’un des régimes alimentaires ne soit plus représenté dans le milieu.
  
- Absence de certaines espèces emblématiques ;
+
À plus forte raison lorsque deux perturbations adviennent.
 +
|Deepen=Dans les écosystèmes, les espèces peuvent être regroupées par traits fonctionnels.
  
- Modification de la morphologie des cours d’eau ;
 
  
- Présence de pollution dans les eaux ;
+
Par exemple, pour des plantes, on peut regrouper l’ensemble des espèces ayant le même type racinaire au sein d’un premier trait, puis regrouper les espèces ayant des surfaces de feuilles équivalentes au sein d’un deuxième trait, etc.
  
- Indices biologiques avec des notes dégradées ;
 
  
-
+
Pour les macro-invertébrés, un trait peut être le régime alimentaire, comme nous l’avons vu dans cette fiche. Un insecte (Plécoptère) et un crustacé (Gammare) peuvent être présents dans le même groupe (déchiqueteur par exemple) pour cette caractéristique. Un autre trait peut être l’habitat utilisé (végétaux, cailloux, sable…). Le plécoptère et le gammare peuvent différer de ce point de vue là, le premier vivant plutôt sur des cailloux, le second dans les végétaux. Ils mangent donc la même chose, mais pas au même endroit dans la rivière !
|Deepen=La notion de bon état écologique est apparue dans les années 1990 lors du Sommet de la Terre.
 
  
> En Europe, elle est reprise dans une directive en l’an 2000 qui impose des objectifs de qualité pour les eaux de surface et souterraines.
 
  
> En France, elle est notamment reprise par les lois Grenelle dans la Trame verte et bleue française.
+
La même espèce peut être regroupée avec des espèces différentes dans des traits différents, en fonction de la caractéristique de celle-ci qui sera considérée.
|Related=Afin d'illustrer concrètement cette activité, il est aussi possible de faire les expériences suivantes :
 
  
- [[Indices biologiques de qualité de l'eau]], afin de comprendre comment est construit l'un des critères du bon état écologiques des cours d'eau ;
 
  
- [[Détermination des invertébrés d'eau douce]], afin d'apprendre à connaître ces êtres-vivant qui sont utilisés pour construire l'un des indices biologiques de qualité de l'eau
+
Une fois les traits renseignés pour les différentes espèces, il est possible d’avoir une image des différents processus ayant lieu dans un écosystème, comme la capacité à dégrader la litière (les feuilles mortes des arbres), la capacité d’une prairie à aller chercher les éléments nutritifs en profondeur, etc.
 +
 
 +
 
 +
Cette pratique scientifique se nomme l’écologie fonctionnelle.
 +
 
 +
 
 +
Ici, deux notions entrent en jeu :
 +
 
 +
- La '''diversité spécifique''' représente le nombre d’espèces présentes dans un milieu donné ;
 +
 
 +
- La '''diversité fonctionnelle''' peut être définie comme la diversité des traits fonctionnels, ces traits étant des composantes du phénotype des organismes qui influencent des processus écosystémiques.
 +
 
 +
Dans un écosystème, les espèces vont assurer des fonctions qui sont similaires (par exemple plusieurs espèces dégradent la litière) mais chaque espèce va réaliser cette fonction de façon un peu différente.
 +
 
 +
Plus la diversité spécifique est importante et plus la diversité fonctionnelle l’est aussi, plus les processus sont stables et pérennes. Lorsqu'advient une perturbation, certaines espèces seront capables d’y faire face et si certaines disparaissent, la redondance fonctionnelle fait que les processus vont pouvoir continuer à avoir lieu. Ce phénomène constitue donc aussi, entre autres, le moteur de la résilience des écosystèmes.
 +
 
 +
 
 +
Dans les écosystèmes peu diversifiés, la moindre perturbation peut avoir des conséquences importantes sur les processus écosystémiques.
 +
|Applications=Selon le service public Eau-France :
 +
 
 +
– 79 % des habitats d’eaux courantes (rivières) présentent un état de conservation globalement défavorable sur la période 2007-2012 ;
 +
 
 +
– 60 % des habitats d’eaux courantes (rivières) présentent une tendance au déclin entre 2007 et 2012 ;
 +
 
 +
– 95 % des habitats d’eaux dormantes (lacs, mares) présentent un état de conservation globalement défavorable sur la période 2007-2012 ;
 +
 
 +
– 58 % des habitats d’eaux dormantes (lacs, mares) présentent une tendance au déclin entre 2007 et 2012 ;
 +
 
 +
 
 +
Même si ces chiffres ne traduisent pas directement la qualité fonctionnelle des écosystèmes, il est évident que les habitats aquatiques ont à faire face, en plus de leur raréfaction, à de nombreuses perturbations.
 +
 
 +
 
 +
Or, ces habitats assurent de nombreuses fonctions, comme le recyclage des nutriments issus du milieu terrestre ou la purification de l’eau.
 +
 
 +
Ces perturbations remettent donc en cause au moins en partie les fonctions des écosystèmes aquatiques selon les mécanismes que nous avons vus lors de cette expérience.
 +
 
 +
 
 +
Par conséquent, il est important de préserver la biodiversité, au-delà de diversité spécifique, c’est aussi la diversité fonctionnelle qui est en jeu.
 +
|Related=D’autres activités sur la même thématique sont disponibles sur le Wiki :
 +
 
 +
- [[Détermination des invertébrés d'eau douce]], afin d'apprendre à connaître les êtres-vivant qui sont utilisés dans cette fiche ;
  
- Pour aller plus loin, [[La diversité spécifique, l'assurance de la fonctionnalité]], pour comprendre une partie du fonctionnement des écosystèmes.
+
- [[Indices biologiques de qualité de l'eau]], afin de comprendre comment est construit l'un des critères du bon état écologiques des cours d'eau ;
|Notes=[https://fr.wikipedia.org/wiki/Directive-cadre_sur_l%27eau '''Wikipédia :''' «directive-cadre sur l’eau»]
 
  
[https://www.eaufrance.fr/regles-devaluation-de-letat-des-eaux '''Eau France :''' règles d’évaluation de l’état] [https://www.eaufrance.fr/regles-devaluation-de-letat-des-eaux des eaux]
+
- [[Bon état écologique]], qui présente ce que signifie un écosystème en bon état.
 +
|Objectives=- Mettre en scène un écosystème aquatique ;
  
'''[https://sdage-sage.eau-loire-bretagne.fr/home/des-eaux-en-bon-etat/quest-ce-que-le-bon-etat.html Sdage et Sage en Loire-Bretagne :]''' [https://sdage-sage.eau-loire-bretagne.fr/home/des-eaux-en-bon-etat/quest-ce-que-le-bon-etat.html qu’est-ce que le bon état des eaux ?]
+
- Comprendre un des effets des perturbations sur les écosystèmes ;
  
[http://www.gesteau.fr/sites/default/files/cr_reunion/LB2016-07.pdf '''Gesteau :''' l’état écologique des cours d’eau]
+
- Appréhender une partie du fonctionnement de la biodiversité.
 +
|Animation=Afin de rendre ludique cette expérience dont le contenu théorique est très dense, essayer de raconter l’histoire du cours d’eau et des perturbations sous forme de conte.
  
 +
Il apparaît important de bien maîtriser les notions afin de pouvoir prendre le temps de discuter avec les participant.e.s durant cette expérience.
  
 +
Lors l’animation, le choix des perturbations est laissé à l’appréciation de l’animateur.rice. Pour cela, s’appuyer sur le recueil de représentations ou sur un cas concret.
 +
|Notes=Duru et al., Functional ecology for evaluating and predicting the aptitude of permanent grassland to provide services, Fourrages(2013),213,21-34 ([https://www.researchgate.net/profile/Claire_Jouany/publication/297313555_Functional_ecology_for_evaluating_and_predicting_the_aptitude_of_permanent_grassland_to_provide_services/links/5c3d9bd292851c22a375dbb8/Functional-ecology-for-evaluating-and-predicting-the-aptitude-of-permanent-grassland-to-provide-services.pdf https://www.researchgate.net/profile/Claire_Jouany/publication/297313555_Functional_ecology_for_evaluating_and_predicting_the_aptitude_of_permanent_grassland_to_provide_services/links/5c3d9bd292851c22a375dbb8/Functional-ecology-for-evaluating-and-predicti])
  
 +
Jonathan Lenoir, Écologie Fonctionnelle, Unité CNRS ”Écologie et Dynamique des Systèmes Anthropisés” de l’université de Picardie Jules Verne (https://jonathanlenoir.files.wordpress.com/2013/12/ecologie-fonctionnelle.pdf)
  
 +
Wikipédia : https://fr.wikipedia.org/wiki/%C3%89cologie_fonctionnelle
  
<br />
+
Eau France, l’état de la biodiversité aquatique : https://www.eaufrance.fr/letat-de-la-biodiversite-aquatique
 
}}
 
}}
 
{{Tuto Status
 
{{Tuto Status
 
|Complete=Published
 
|Complete=Published
 
}}
 
}}

Version du 27 janvier 2023 à 15:11

Auteur avatarNathanaël Latour | Dernière modification 2/05/2023 par Quentin G.

La diversit sp cifique l assurance de la fonctionnalit La diversit sp cifique l assurance de la fonctionnalit Sans titre.png
Les espèces, dans l’écosystème dans lequel elles vivent, vont assurer des rôles et des fonctions qui sont propres à chacune d’entre elles. Plusieurs espèces, dans un même écosystème, vont assurer des rôles ou des fonctions proches. Or, si la diversité spécifique (en nombre d’espèces) diminue dans un écosystème, une partie des rôles ou des fonctionnalités ne vont plus, au moins en partie, avoir lieu normalement.
Licence : Attribution (CC-BY)

Introduction

Cette expérience est une illustration de l'une des raisons pour lesquelles la diversité en termes de nombre d’espèce est importante dans les écosystèmes.

En effet, dans les écosystèmes, chaque espèce assure, lors de son cycle de vie, un certain nombre de fonctions.

Par exemple, une espèce A de larve d’insecte aquatique consomme des champignons qui poussent sur des feuilles d’arbres tombées dans l’eau, ce qui découpe les feuilles en morceaux de grande taille.

Une espèce B consomme les champignons sur les morceaux de feuilles de grande taille, ce qui les découpe à nouveau, en morceaux plus petits.

Et ainsi de suite.


Certaines espèces assurent, en terme écosystémique, des fonctions relativement proches.

Par exemple, une espèce A’ peut aussi consommer des champignons sur des feuilles de taille similaire à l’espèce A et les découper aussi en morceaux grossiers.

Lorsque qu’un écosystème est perturbé, certaines espèces peuvent disparaître.


Lors de cette expérience, nous allons comprendre pourquoi il existe un risque de voir certaines fonctions ne plus être assurées lorsque des perturbations touchent un écosystème et suivant la diversité spécifique.


Ici pour simplifier la compréhension, nous avons limité la notion des fonctions assurées par les espèces au sein des écosystèmes à la notion de régime alimentaire.

De la même façon, les espèces sont en fait des groupes taxonomiques importants (souvent la classe) et sont là seulement à titre illustratif.


Cette fiche expérience s’intègre dans le Parcours 3 : Solutions et techniques d'étude. Elle est réalisée dans le cadre d'un partenariat avec l'agence de l'eau Loire - Bretagne. La fiche mise en page est disponible en pdf et téléchargeable ici.
  • Fichiers

Étape 1 - Préparer les cartes

Description des tâches à réaliser :

  • Télécharger les fichiers en cliquant sur le lien suivant : Fichier en version PDF;
  • Imprimer les cartes ;
  • Découper les différentes cartes ;
  • Faire deux lots :
    • Un lot A avec la richesse spécifique importante ;
    • Un lot B avec la richesse spécifique faible.



Étape 2 - Distribuer le jeu de carte A

Distribuer face cachée les cartes du lot A. L’idéal est d’avoir au minimum une dizaine de cartes.




Étape 3 - Révéler les cartes

Chaque participant.e révèle sa ou ses cartes.


Il.Elle présente ensuite l’organisme figurant sur sa carte, son régime alimentaire et le numéro de la perturbation à laquelle ce dernier est sensible.


Voici la liste des régimes alimentaires et leur définition :

- Déchiqueteur. Une fois tombées à l’eau, les feuilles d’arbres sont colonisées par des champignons microscopiques (hyphomycètes). Certains macro-invertébrés coupent en morceaux les feuilles pour consommer les champignons ;

- Prédateur. Il s’agit de macro-invertébrés qui se nourrissent d’autres macro-invertébrés en les attrapant vivants ;

- Racleur. Les organismes ayant ce type de régime alimentaire mangent les micro-organismes qui poussent sur les éléments présents dans le cours d’eau (pierres, morceaux de bois…). Ces micro-organismes forment le plus souvent une couche transparente d’aspect gélatineux, nommée biofilm ;

- Piqueur. Il s'agit de macro-invertébrés qui se nourrissent en piquant, soit les plantes aquatiques pour aspirer de leur sève, soit les animaux afin d’aspirer leurs fluides. Dans les deux cas, l’animal, de la même façon que la plante, peut survivre à la piqûre (si l’intensité, la fréquence et l’état sanitaire de la plante ou de l’animal le permettent). Il s’agit donc d’un comportement différent de la prédation.


Ensuite, il convient de regarder quels sont les régimes alimentaires présents dans le groupe et combien d’espèces partagent le même régime alimentaire.


Quatre perturbations figurent sur les cartes (A, B, C et D). Ces quatre perturbations sont théoriques. Il est possible de donner des exemples de perturbations réelles pour illustrer son propos :


- Des perturbations de débit (étiage important, prélèvements d’eau important, ou au contraire pluie torrentielle) ;

- Des perturbations des habitats (prélèvement des granulats, arrachages des herbiers, curage du cours d’eau, retrait de la litière, arasement de la ripisylve…)

- Des pollutions (rejet agricole organique, épandage dans un champ à proximité de pesticides, d'engrais, etc.) ;

- Des modifications du cours d’eau (talutage, creusement du lit mineur, modification du chenal d’étiage, calibrage…).


Voir « Pistes pour animer l’expérience ».




Étape 4 - Définir et appliquer les perturbations

L’animateur.rice choisit une des quatre perturbations (1, 2, 3 ou 4).


Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.


Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.

L’animateur.rice choisit une deuxième des quatre perturbations (1, 2, 3 ou 4).

Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.


Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.


Discuter avec les participant.e.s de l’effet des perturbations sur ce groupe d’espèces.




Étape 5 - Distribuer le jeu de carte B

Distribuer face cachée les cartes du lot B. L’idéal est d’avoir au minimum une dizaine de cartes.




Étape 6 - Révéler les cartes

Chaque participant.e révèle sa ou ses cartes, puis présente l’organisme figurant sur chacune de ses cartes son régime alimentaire et le numéro de la perturbation à laquelle ce dernier est sensible.


Comparer avec la situation précédente en termes de nombre d’espèces.




Étape 7 - Définir et appliquer les perturbations

L’animateur.rice choisit une des quatre perturbations (1, 2, 3 ou 4).


Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.


Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.


L’animateur-rice choisit une deuxième des quatre perturbations (1, 2, 3 ou 4).

Mettre à la défausse les cartes présentant des espèces sensibles à la perturbation choisie.


Faire le bilan du nombre de régimes alimentaires restant et du nombre d’espèces qui dépendent de ces régimes alimentaires.


Discuter avec les participant.e.s de l’effet des perturbations sur ce groupe d’espèces.




Comment ça marche ?

Observations : que voit-on ?

Faire la comparaison entre les deux situations :

- Quel est le groupe (A ou B) ayant le mieux résisté ? ;

- Quel a été l’effet de la première perturbation sur le groupe A ? ;

- Sur le groupe B ? ;

- Quel a été l’effet de la deuxième perturbation sur le groupe A ? ;

- Sur le groupe B ?


Une fois les conclusions tirées, il est possible de refaire la manipulation afin de vérifier les conclusions.

Mise en garde : qu'est-ce qui pourrait faire rater l'expérience ?

Pour que cette expérience fonctionne, il faut bien mélanger les cartes et bien prendre le temps de a discussion avec les participant.e.s.

Explications

Dans le premier groupe, le nombre d’espèces est important. À chaque fois, quatre espèces différentes possèdent le même régime alimentaire. Lorsqu’une perturbation se produit dans l’écosystème, certaines espèces vont disparaître, mais comme d’autres partagent le même régime alimentaire, il y a peu de risques que celles-ci disparaissent de l’écosystème.


Dans le deuxième groupe, le nombre d’espèces est faible. Ici seules deux espèces possèdent le même régime alimentaire. Lorsqu’une perturbation se produit dans le milieu, il y a un risque important qu’un des régimes alimentaires ne soit plus représenté dans le milieu.

À plus forte raison lorsque deux perturbations adviennent.

Plus d'explications

Dans les écosystèmes, les espèces peuvent être regroupées par traits fonctionnels.


Par exemple, pour des plantes, on peut regrouper l’ensemble des espèces ayant le même type racinaire au sein d’un premier trait, puis regrouper les espèces ayant des surfaces de feuilles équivalentes au sein d’un deuxième trait, etc.


Pour les macro-invertébrés, un trait peut être le régime alimentaire, comme nous l’avons vu dans cette fiche. Un insecte (Plécoptère) et un crustacé (Gammare) peuvent être présents dans le même groupe (déchiqueteur par exemple) pour cette caractéristique. Un autre trait peut être l’habitat utilisé (végétaux, cailloux, sable…). Le plécoptère et le gammare peuvent différer de ce point de vue là, le premier vivant plutôt sur des cailloux, le second dans les végétaux. Ils mangent donc la même chose, mais pas au même endroit dans la rivière !


La même espèce peut être regroupée avec des espèces différentes dans des traits différents, en fonction de la caractéristique de celle-ci qui sera considérée.


Une fois les traits renseignés pour les différentes espèces, il est possible d’avoir une image des différents processus ayant lieu dans un écosystème, comme la capacité à dégrader la litière (les feuilles mortes des arbres), la capacité d’une prairie à aller chercher les éléments nutritifs en profondeur, etc.


Cette pratique scientifique se nomme l’écologie fonctionnelle.


Ici, deux notions entrent en jeu :

- La diversité spécifique représente le nombre d’espèces présentes dans un milieu donné ;

- La diversité fonctionnelle peut être définie comme la diversité des traits fonctionnels, ces traits étant des composantes du phénotype des organismes qui influencent des processus écosystémiques.

Dans un écosystème, les espèces vont assurer des fonctions qui sont similaires (par exemple plusieurs espèces dégradent la litière) mais chaque espèce va réaliser cette fonction de façon un peu différente.

Plus la diversité spécifique est importante et plus la diversité fonctionnelle l’est aussi, plus les processus sont stables et pérennes. Lorsqu'advient une perturbation, certaines espèces seront capables d’y faire face et si certaines disparaissent, la redondance fonctionnelle fait que les processus vont pouvoir continuer à avoir lieu. Ce phénomène constitue donc aussi, entre autres, le moteur de la résilience des écosystèmes.


Dans les écosystèmes peu diversifiés, la moindre perturbation peut avoir des conséquences importantes sur les processus écosystémiques.

Applications : dans la vie de tous les jours

Selon le service public Eau-France :

– 79 % des habitats d’eaux courantes (rivières) présentent un état de conservation globalement défavorable sur la période 2007-2012 ;

– 60 % des habitats d’eaux courantes (rivières) présentent une tendance au déclin entre 2007 et 2012 ;

– 95 % des habitats d’eaux dormantes (lacs, mares) présentent un état de conservation globalement défavorable sur la période 2007-2012 ;

– 58 % des habitats d’eaux dormantes (lacs, mares) présentent une tendance au déclin entre 2007 et 2012 ;


Même si ces chiffres ne traduisent pas directement la qualité fonctionnelle des écosystèmes, il est évident que les habitats aquatiques ont à faire face, en plus de leur raréfaction, à de nombreuses perturbations.


Or, ces habitats assurent de nombreuses fonctions, comme le recyclage des nutriments issus du milieu terrestre ou la purification de l’eau.

Ces perturbations remettent donc en cause au moins en partie les fonctions des écosystèmes aquatiques selon les mécanismes que nous avons vus lors de cette expérience.


Par conséquent, il est important de préserver la biodiversité, au-delà de diversité spécifique, c’est aussi la diversité fonctionnelle qui est en jeu.

Vous aimerez aussi

D’autres activités sur la même thématique sont disponibles sur le Wiki :

- Détermination des invertébrés d'eau douce, afin d'apprendre à connaître les êtres-vivant qui sont utilisés dans cette fiche ;

- Indices biologiques de qualité de l'eau, afin de comprendre comment est construit l'un des critères du bon état écologiques des cours d'eau ;

- Bon état écologique, qui présente ce que signifie un écosystème en bon état.

Éléments pédagogiques

Objectifs pédagogiques

- Mettre en scène un écosystème aquatique ;

- Comprendre un des effets des perturbations sur les écosystèmes ;

- Appréhender une partie du fonctionnement de la biodiversité.

Pistes pour animer l'expérience

Afin de rendre ludique cette expérience dont le contenu théorique est très dense, essayer de raconter l’histoire du cours d’eau et des perturbations sous forme de conte.

Il apparaît important de bien maîtriser les notions afin de pouvoir prendre le temps de discuter avec les participant.e.s durant cette expérience.

Lors l’animation, le choix des perturbations est laissé à l’appréciation de l’animateur.rice. Pour cela, s’appuyer sur le recueil de représentations ou sur un cas concret.

Sources et ressources

Duru et al., Functional ecology for evaluating and predicting the aptitude of permanent grassland to provide services, Fourrages(2013),213,21-34 (https://www.researchgate.net/profile/Claire_Jouany/publication/297313555_Functional_ecology_for_evaluating_and_predicting_the_aptitude_of_permanent_grassland_to_provide_services/links/5c3d9bd292851c22a375dbb8/Functional-ecology-for-evaluating-and-predicti)

Jonathan Lenoir, Écologie Fonctionnelle, Unité CNRS ”Écologie et Dynamique des Systèmes Anthropisés” de l’université de Picardie Jules Verne (https://jonathanlenoir.files.wordpress.com/2013/12/ecologie-fonctionnelle.pdf)

Wikipédia : https://fr.wikipedia.org/wiki/%C3%89cologie_fonctionnelle

Eau France, l’état de la biodiversité aquatique : https://www.eaufrance.fr/letat-de-la-biodiversite-aquatique

Dernière modification 2/05/2023 par user:Quentin G..

Commentaires

Published