Différences entre les pages « Item:CD » et « Ballon en lévitation »

(Page créée avec « {{Item |Main_Picture=Item-CD_50337215_384853118756732_7263525829160730624_n.jpg |Description=Un CD (abréviation de « Compact Disc » en anglais1), ou disque compact, est... »)
 
 
Ligne 1 : Ligne 1 :
{{Item
+
{{Tuto Details
|Main_Picture=Item-CD_50337215_384853118756732_7263525829160730624_n.jpg
+
|Licences=Attribution (CC-BY)
|Description=Un CD (abréviation de « Compact Disc » en anglais1), ou disque compact, est un disque optique utilisé pour stocker des données sous forme numérique.
+
|Description=Comment immobiliser un ballon dans l'air... en soufflant dessus ?!
|Categories=Matériel, Outils
+
|Area=Mechanics
|Cost=2
+
|Difficulty=Easy
|Currency=EUR ()
+
|Duration=10
|ItemLongDescription=La technique du disque compact repose sur une méthode optique : un faisceau de lumière cohérente ([https://fr.wikipedia.org/wiki/Laser laser]) vient frapper le disque en rotation. Les irrégularités (appelées « ''pits'' », cavités dont la longueur varie entre 0,833 et 3,56 <abbr class="abbr" title="micromètre">[https://fr.wikipedia.org/wiki/Microm%C3%A8tre µm]</abbr>, et dont la largeur est de 0,6 μm) dans la surface réfléchissante de celui-ci produisent des variations [https://fr.wikipedia.org/wiki/Bit binaires]. Le [https://fr.wikipedia.org/wiki/Rayon_(optique) rayon] réfléchi est enregistré par un [https://fr.wikipedia.org/wiki/Capteur capteur]. Plus précisément, lorsque le faisceau passe de la surface plane à cette cavité, il se produit des [https://fr.wikipedia.org/wiki/Interf%C3%A9rence interférences] : lorsque le faisceau ne rencontre qu'une surface plane, l'intensité lumineuse du faisceau réfléchi vers le capteur est maximale, et fait correspondre à cet état la valeur binaire 0 ; quand le faisceau passe sur le ''pit'', le capteur détecte les interférences et l'intensité du signal reçu diminue.La valeur binaire 1 est alors attribuée<sup id="cite_ref-2" class="reference">[https://fr.wikipedia.org/wiki/Disque_compact#cite_note-2 2]</sup>. En effet, lorsque le laser est émis sur une telle discontinuité, une partie des rayons lumineux émis sera réfléchie depuis le creux, tandis que l'autre partie sera réfléchie depuis le plat. Aussi se crée-t-il une différence de marche entre ces deux rayons réfléchis, c'est-à-dire un déphasage entre les deux ondes. Or la profondeur du ''pit'' est très spécifique à celle du laser utilisé pour la lecture, en effet elle est ''λ''/4, avec ''λ'' la longueur d'onde du laser. Deux ondes issues d'une source cohérente sont dites constructives (c'est-à-dire que leurs amplitudes s'additionnent) lorsque la différence de marche notée ''δ'' vérifie : ''δ'' = ''λ''·''k'', avec ''k'' un entier relatif. C'est le cas lorsque le laser se réfléchit sur un plat ou un creux (''k'' = 0). Au contraire, lorsque le rayon se réfléchit sur un passage creux/plat (ou plat/creux), où l'onde réfléchie dans le creux parcourt donc la profondeur du ''pit'' multipliée par deux (aller plus retour) soit une distance ''d'' = 2''λ''/4 = ''λ''/2, la valeur de la différence de marche vérifie : ''δ'' = ''λ'' (''k'' + 0,5), correspondant à une différence de marche pour des ondes destructives (dont les amplitudes s'annulent). C'est donc l'intensité du signal lumineux réfléchi sur la piste du support de stockage et reçu par le capteur — lequel associe des variations de tension aux variations d'intensité reçues — qui est codée en binaire<sup id="cite_ref-3" class="reference">[https://fr.wikipedia.org/wiki/Disque_compact#cite_note-3 3]</sup>. Lorsque le disque compact est utilisé comme support pour l’écoute musicale (premières utilisations), l’information binaire est ensuite transformée en un signal [https://fr.wikipedia.org/wiki/Analogique analogique] par un [https://fr.wikipedia.org/wiki/Convertisseur_num%C3%A9rique-analogique convertisseur numérique-analogique].
+
|Duration-type=minute(s)
 +
}}
 +
{{Introduction}}
 +
{{Materials
 +
|ItemList={{ItemList
 +
|Item=Ballon de baudruche
 +
}}{{ItemList
 +
|Item=Séche cheveux
 +
}}
 +
}}
 +
{{Separator}}
 +
{{Tuto Step
 +
|Step_Title=Gonfler
 +
|Step_Content==== '''La manipulation''' ===
 +
* Gonfler (pas trop !) et fermer le ballon de baudruche.
 +
}}
 +
{{Tuto Step
 +
|Step_Title=Orianter
 +
|Step_Content=* Orienter le sèche-cheveux verticalement vers le haut.
 +
}}
 +
{{Tuto Step
 +
|Step_Title=Placer
 +
|Step_Content=Placer le ballon de baudruche dans le flux d'[http://www.wikidebrouillard.org/index.php?title=Air air].
 +
}}
 +
{{Notes
 +
|Observations=Le ballon se stabilise dans le flux d'[http://www.wikidebrouillard.org/index.php?title=Air air]. On peut même orienter le flux d'[http://www.wikidebrouillard.org/index.php?title=Air air] (le sèche-cheveux), le ballon suivra !
 +
|Explanations=L'air chaud est plus léger que l'air froid, il a donc tendance à monter.
 +
 
 +
De plus, l'air soufflé par le sèche-cheveux pousse le ballon vers le haut. Le ballon trouve son équilibre entre son poids qui l'entraîne vers le bas et la poussée de l'air vers le haut.
 +
 
 +
Le ballon reste donc suspendu dans les airs... en lévitation !
 +
 
 +
=== '''Questions sans réponses''' ===
 +
Pourquoi le poids nous entraîne-t-il vers le bas ?
 +
 
 +
Pourquoi l'air chaud monte ?
 +
 
 +
Cela fonctionne-t-il avec un ventilateur ?
 +
|Deepen==== '''Allons plus loin dans l'explication''' ===
 +
Si un liquide s'écoule dans une canalisation (ici, l'[http://www.wikidebrouillard.org/index.php?title=Air air] sortant du sèche-cheveux), comme il est incompressible, son débit (volume transitant à travers une surface par unité de temps) est constant. Si la canalisation s'élargit, alors la vitesse diminue (puisque le débit est le produit de la vitesse par la section, les deux varient à l'inverse). Le théorème de Bernoulli nous indique alors que la pression augmente. À l'inverse, si la canalisation se rétrécit, le fluide accélère et sa pression diminue : '''c'est l'effet Venturi'''.
 +
 
 +
Ce résultat est assez peu intuitif (on s'attendrait à ce que la pression augmente lorsque la section diminue).
 +
 
 +
Si maintenant la conduite reste de section constante mais que l'on met un obstacle à l'intérieur (ici, le ballon ou la balle), l'obstacle diminue la section. On a donc le même effet. Si cet obstacle est un cylindre tournant, d'axe perpendiculaire à l'axe de la canalisation, alors le frottement accélère le fluide d'un côté et le ralentit de l'autre. On a donc une diminution de pression d'un côté et une augmentation de l'autre, le cylindre subit une force : c'est l'effet Magnus (notons que l'on considère souvent l'effet Magnus dans l'[http://www.wikidebrouillard.org/index.php?title=Air air], qui est un fluide compressible, mais le principe général reste le même).
 +
* [http://fr.wikipedia.org/wiki/Effet_Venturi Effet Venturi] sur Wikipédia
 +
* D'autres applications de l'effet Venturi sur :[http://www.unilim.fr/scientibus/36manips/fiche_det.php?num_manip=10 Effet Venturi] sur Scientibus
 +
|Applications=* '''L'effet Venturi sur une aile d'avion''' : On remarque que le dessus d'une aile d'avion est bombé alors que le dessous est plat. Donc l'[http://www.wikidebrouillard.org/index.php?title=Air air] qui passe au-dessus va plus vite que l'[http://www.wikidebrouillard.org/index.php?title=Air air] qui passe en-dessous. Ceci crée une dépression sur le dessus et une surpression en dessous : ainsi l'avion est aspiré vers le haut. On parle de '''portance'''.
 +
 
 +
* '''L'effet Venturi dans une formule 1''' : l'effet Venturi sert à coller la voiture au sol (on parle d'effet de sol), tout en évitant de présenter une trop grande résistance à la pénétration dans l'[http://www.wikidebrouillard.org/index.php?title=Air air] de la voiture.
 +
 
 +
* '''Les pales d'une éolienne''' sont entourées d'un anneau correspondant en fait à un Venturi, ce qui permet de canaliser et d'amplifier la force du vent. Ainsi on peut obtenir un courant constant. Ceci permet d'augmenter la production énergétique.
 +
 
 +
* '''L'effet Venturi en montagne''' : L'effet Venturi existe aussi naturellement dans les vallées et au sommet des montagnes. En effet, lorsque l'[http://www.wikidebrouillard.org/index.php?title=Air air] rencontre une vallée, il accélère pour conserver le même débit. De même, l'[http://www.wikidebrouillard.org/index.php?title=Air air] a tendance à s'écraser au sommet d'une montagne et donc à accélérer.
 +
Certaines cheminées mettent à profit l'effet Venturi, ce qui permet d'augmenter leur tirage. Dans un autre domaine, la plupart des pistolets à peinture qui servent à projeter la peinture en fines gouttelettes fonctionnent eux aussi sur le principe du Venturi.
 
}}
 
}}
 
{{Tuto Status
 
{{Tuto Status
|Complete=Published
+
|Complete=Draft
 
}}
 
}}

Version du 11 février 2019 à 11:47

Auteur avatarTess | Dernière modification 15/10/2019 par Pierreb

Pas encore d'image

Étape 1 - Gonfler

La manipulation

  • Gonfler (pas trop !) et fermer le ballon de baudruche.

Étape 2 - Orianter

  • Orienter le sèche-cheveux verticalement vers le haut.

Étape 3 - Placer

Placer le ballon de baudruche dans le flux d'air.

Comment ça marche ?

Observations : que voit-on ?

Le ballon se stabilise dans le flux d'air. On peut même orienter le flux d'air (le sèche-cheveux), le ballon suivra !

Explications

L'air chaud est plus léger que l'air froid, il a donc tendance à monter.

De plus, l'air soufflé par le sèche-cheveux pousse le ballon vers le haut. Le ballon trouve son équilibre entre son poids qui l'entraîne vers le bas et la poussée de l'air vers le haut.

Le ballon reste donc suspendu dans les airs... en lévitation !

Questions sans réponses

Pourquoi le poids nous entraîne-t-il vers le bas ?

Pourquoi l'air chaud monte ?

Cela fonctionne-t-il avec un ventilateur ?

Plus d'explications

Allons plus loin dans l'explication

Si un liquide s'écoule dans une canalisation (ici, l'air sortant du sèche-cheveux), comme il est incompressible, son débit (volume transitant à travers une surface par unité de temps) est constant. Si la canalisation s'élargit, alors la vitesse diminue (puisque le débit est le produit de la vitesse par la section, les deux varient à l'inverse). Le théorème de Bernoulli nous indique alors que la pression augmente. À l'inverse, si la canalisation se rétrécit, le fluide accélère et sa pression diminue : c'est l'effet Venturi.

Ce résultat est assez peu intuitif (on s'attendrait à ce que la pression augmente lorsque la section diminue).

Si maintenant la conduite reste de section constante mais que l'on met un obstacle à l'intérieur (ici, le ballon ou la balle), l'obstacle diminue la section. On a donc le même effet. Si cet obstacle est un cylindre tournant, d'axe perpendiculaire à l'axe de la canalisation, alors le frottement accélère le fluide d'un côté et le ralentit de l'autre. On a donc une diminution de pression d'un côté et une augmentation de l'autre, le cylindre subit une force : c'est l'effet Magnus (notons que l'on considère souvent l'effet Magnus dans l'air, qui est un fluide compressible, mais le principe général reste le même).

Applications : dans la vie de tous les jours

  • L'effet Venturi sur une aile d'avion : On remarque que le dessus d'une aile d'avion est bombé alors que le dessous est plat. Donc l'air qui passe au-dessus va plus vite que l'air qui passe en-dessous. Ceci crée une dépression sur le dessus et une surpression en dessous : ainsi l'avion est aspiré vers le haut. On parle de portance.
  • L'effet Venturi dans une formule 1 : l'effet Venturi sert à coller la voiture au sol (on parle d'effet de sol), tout en évitant de présenter une trop grande résistance à la pénétration dans l'air de la voiture.
  • Les pales d'une éolienne sont entourées d'un anneau correspondant en fait à un Venturi, ce qui permet de canaliser et d'amplifier la force du vent. Ainsi on peut obtenir un courant constant. Ceci permet d'augmenter la production énergétique.
  • L'effet Venturi en montagne : L'effet Venturi existe aussi naturellement dans les vallées et au sommet des montagnes. En effet, lorsque l'air rencontre une vallée, il accélère pour conserver le même débit. De même, l'air a tendance à s'écraser au sommet d'une montagne et donc à accélérer.

Certaines cheminées mettent à profit l'effet Venturi, ce qui permet d'augmenter leur tirage. Dans un autre domaine, la plupart des pistolets à peinture qui servent à projeter la peinture en fines gouttelettes fonctionnent eux aussi sur le principe du Venturi.


Dernière modification 15/10/2019 par user:Pierreb.

Commentaires

Draft