Attribut:Deepen

This is a property of type Text.

Affichage de 20 pages utilisant cette propriété.
1
Nos deux globes oculaires sont situés en avant de la tête, nous fournissant alors une vision binoculaire dite stéréoscopique. Grâce à elle, nous apprécions bien les distances.  +
A
Dans un écosystème, chaque espèce va interagir avec d’autres espèces et donc, est amenée à aider et à servir ces autres espèces. En se nourrissant de nectar, les insectes pollinisateurs contribuent inconsciemment à la sauvegarde de la planète, permettant la fabrication de nombreux fruits et légumes indispensables à la survie de nombreuses espèces, dont la nôtre.  +
Le broyage de l'oignon casse les parois externes des cellules qui sont rigides, ce qui permet de libérer l'ADN qui se situe à l'intérieur des cellules de l'oignon. Le sel favorise la précipitation de certaines protéines de l'oignon (inutiles pour l'expérience) qui resteront donc dans le filtre. Il absorbe l'eau contenue dans les cellules de l'oignon et facilite la précipitation de l’ADN lorsqu’on ajoute l’alcool. En ajoutant l’alcool, on fait précipiter l’ADN, qui devient alors visible : ses filaments s’agglomèrent en pelote. L'ADN précipite car il est insoluble dans l'alcool. L'ADN remonte doucement à la surface. Nous avons vu que pour extraire l'ADN de l'oignon, il faut effectuer une réaction chimique entre l'oignon et l'alcool. Une réaction chimique est une transformation de matière. Les matières utilisées avant la transformation sont appelées les réactifs. Les matières qui se forment après la transformation sont appelées les produits.  +
'''<u>Aires Marines Protégés, un problème de définition ?</u>''' Afin d’assurer leur rôle dans la pêche durable, assurant prospérité durable des écosystèmes marins et des pêcheur.euses la communauté scientifique et les ONG insiste sur la définition claire, ce qui n’est aujourd’hui pas vraiment le cas, en France du moins. L’UICN en 2008 définissait une Aire protégé au sens large comme : « un espace géographique clairement défini, reconnu, dédié et géré, par des moyens légaux ou d'autres moyens efficaces, afin d'assurer la conservation à long terme de la nature avec les services écosystémiques et les valeurs culturelles associés. » Au congrés mondial pour la nature d'Hawaii 2016 qui a réuni près de 10 000 participants (Des décideur.euses, des membres de la société civile, du secteur privé, du milieu universitaire, de peuples autochtones, etc.), l’UICN a recommandé à l’ensemble des États de protéger 30% des océans et précise que la pêche industrielle ne devrait pas avoir lieu dans ces aires marines protégées. (https://whc.unesco.org/fr/actualites/1563, BLOOM) Pendant ce temps, dans le droit français, est reconnue comme une « aire marine protégée », un espace géographique sur lequel s’applique un des outils de protection listé dans l’article L334-1 du Code de l’environnement (https://www.milieumarinfrance.fr/Nos-rubriques/Cadre-reglementaire/Aires-marines-protegees). Il en résulte 18 catégories française d’AMP se référant à divers textes de lois (Code de l’environnement, le Code rural et de la pêche maritime, des conventions internationales, les Codes de l'environnement des territoires d’outre mer, etc.). Cette conception très modulable va à l’encontre des définitions  +
Le fait de taper sur le verre permet à ce dernier de vibrer. En vibrant, le verre fait vibrer l'air autour de lui (l'air contenu dans le verre mais aussi à l'extérieur du verre). Plus le verre contient d’eau, plus il va vibrer lentement et émettre une note plus grave. Si le verre contient peu d'eau, il va vibrer plus vite et émettre un son plus aigu. Tu peux aussi essayer de faire un verrillon inversé : en mettant des verres vides dans une bassine, tu peux aussi émettre des sons. Si tu modifies la quantité d'eau dans la bassine, la note elle aussi changera.  +
Plusieurs réactions chimiques se produisent. Le CO<sub>2</sub> se combine avec l'eau, en formant de l'acide carbonique (H<sub>2</sub>CO<sub>3</sub>). L’acide carbonique, instable, se dissocie directement en ions bicarbonate (HCO<sub>3</sub><sup>-</sup>) et H<sup>+</sup> (H<sub>2</sub>CO<sub>3</sub> -> HCO<sub>3</sub><sup>-</sup> + H<sup>+</sup>). La libération d’ions H<sup>+</sup> provoque une augmentation de l'acidité, autrement dit le pH diminue. Beaucoup des ions H<sup>+</sup> libérés s'associent avec des ions carbonate (CO<sub>3</sub><sup>2-</sup>) présents naturellement dans l'eau et forment des ions bicarbonate (H<sup>+</sup> + CO<sub>3</sub><sup>2-</sup> -> HCO<sub>3</sub><sup>-</sup>). Donc plus le pH diminue plus la concentration en ions carbonate de l'eau de mer diminue également.  +
=== '''Allons plus loin dans l'explication''' === On a codé l'Arduino à l'aide du langage C afin qu'il puisse afficher les chiffres de 0 à 9. Le code source contient des fonctions « digitalWrite » qui permettent d'allumer des Leds précises selon des paramètres en entrée. La fonction ' digitalWrite ' envoie à chaque exécution le code approprié à chaque led précise pour l'allumer.  +
=== '''Allons plus loin dans l'explication''' === On peut introduire les notions de portance et de traînée d’une aile d’un avion. Ces deux termes se rapportent à la mécanique des fluides et sont définis par différentes formules expliquées sur le site : [http://www.volez.net/aerodynamique-technique/elements-aerodynamique/expressions-portance.html Volez.net]. On peut voir que la forme (le profil) de l’aile influe sur le phénomène de vol. De même sa superficie, en augmentant, augmente les coefficients de portance et de traînée. On le voit concrètement car les avions ont de grandes ailes tandis que les oiseaux en ont des plus petites du fait de leur poids qui est totalement différent.  +
Avant de le plonger dans l'eau, le verre est, en plus du mouchoir, rempli d'air. Lors de l'immersion, l'air présent dans le verre reste bloqué à l'intérieur. Mais si l'air ne parvient pas à s'échapper, l'eau ne peut pas non plus remonter dans le verre, c'est pourquoi le mouchoir reste sec. Pendant l'expérience, le verre est placé dans l'eau à la verticale. Si on l'incline progressivement, l'air bloqué à l'intérieur s'échappe : on observe des bulles qui remontent vers la surface. L'air est donc moins dense que l'eau, et non soluble avec celle-ci.  +
Les leds ont des couleurs définies et s'allument selon l’information partagée.  +
Le bois est composé de fibres cylindriques. L'eau pénètre dans le bois et comble les espaces entre les fibres grâce au phénomène de capillarité: c'est la capacité d'un liquide à pouvoir remonter une surface même contre la gravité (la force qui nous attire vers le centre de la Terre). La capillarité est due à la différence de [[Poivre fuyard|tension superficielle]] entre deux liquides non miscibles (c'est à dire qui ne se mélangent pas), ou entre un liquide et l'air, ou encore entre un liquide et un matériau solide poreux. Un liquide à forte tension superficielle (comme l'eau) remonte en s'opposant à la gravité dans les matériaux composés de petits tubes très fins (appelés "tubes capillaires"). La progression du liquide s'arrête lorsque la gravité et la pression capillaire s'équilibrent. Lorsque le bois d'une allumette gonfle, elle se déplie pour reprendre sa forme initiale : elle pousse sur les autres et ainsi, contribue à agrandir l'étoile. D'autres expériences permettent d'observer ce phénomène, vous les retrouverez dans "Vous aimerez aussi" ci-dessous.  +
L'acier est un matériau qui a un haut point de fusion : 1482°C. C'est à dire qu'il ne fond pas avant d'avoir atteint cette température. En revanche, lorsqu'il atteint une température assez haute, l'acier rougit et émet de la lumière. C'est ce qu'on appelle l'incandescence. Pour éviter que la laine d'acier brûle, il faut chasser l'oxygène de la bouteille. La réaction du bicarbonate de soude avec le vinaigre remplit la bouteille avec du dioxyde de carbone, ce qui permet d'éviter la combustion.  +
La thermodynamique propose que, dans la matière à l'état gazeux, il existe une relation de proportionnalité entre d'un côté la pression P et le volume V et de l'autre côté la quantité de matière n et la température T : PV∝nT, ou P*V = n*T*R (R étant une constante).<br /><br />Sachant que la quantité de matière est directement proportionnelle à la masse.<br /><br /><br />Plus l’air est chaud, moins il est dense : pour une même quantité de matière d’air, le volume sera plus élevé... Ou pour un même volume d'air, celui-ci sera constitué de moins d'espèce chimique, donc sera moins. Quand l’air est assez chaud, il devient telle plus léger que l’air ambiant qu'il peut faire décoller notre sachet de thé !<div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Apollo the Fibressachet.png" data-sourceimage="https://www.wikidebrouillard.org/images/f/ff/Apollo_the_Fibressachet.png"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Apollo_the_Fibressachet.png" class="image"><img alt="Zoom sur un sachet de thé : on distingue bien les fibres du papier" src="/images/f/ff/Apollo_the_Fibressachet.png" width="338" height="245" data-file-width="338" data-file-height="245" /></a></div></div></span></div>Entre les fibres du papier d'un sachet de thé, il y a des vides qui peuvent être occupés par de l’air. C'est cet air emprisonné à l’intérieur de ces fibres qui va chauffer, diminuer de densité, et finir par rendre tout le sachet plus léger que l'air ambiant quand le sachet brûlera.  +
Les flux d'eau dans la plante sont régis par le potentiel hydrique. La capillarité peut occasionnellement intervenir, si et seulement si elle va "dans le bon sens" en fonction de ce que la plante a besoin de faire. En effet les plantes contrôlent étroitement leur eau, c'est la base de ce qu'on appelle l'homéostasie (constance du milieu intérieur). Si les plantes "perdent le contrôle", parce que ce à quoi elles sont soumises est trop important pour elles, elles en meurent. C'est pour cette raison que vous ne verrez jamais un cactus vivre dans une mangrove ou un nénuphar dans le désert. Source sur le flux hydrique dans les plantes : http://www.pmm.universite-paris-saclay.fr/IMG/pdf/les_plantes_et_l_eau.pdf  +
Chaque couleur est caractérisée par une longueur d'onde de l'ordre du nanomètre. Les couleurs visibles par l'œil humain sont les couleurs dont la longueur d'onde se situe entre 380 et 740 nanomètres. [ < 380] ultraviolet [380 - 446] violet [446 - 520] bleu [520 - 565] vert [565 - 590] jaune [590 - 625] orange [625 - 740] rouge [ > 740] infrarouge Si on assemble tous les intervalles des couleurs que l'humain peut voir, on obtient un intervalle allant de 380 à 740 nanomètres. Cette fusion des couleurs de l'arc-en-ciel donne la couleur blanche. Les différentes couleurs qui composent la lumière blanche ne sont pas déviées de la même façon par l'eau, d'où le phénomène de décomposition de lumière qui se traduit par l'arc-en-ciel. La lumière blanche est décomposable. C’est une lumière polychromatique, c’est-à-dire composée de plusieurs couleurs. L'expérience met en œuvre un système dispersif permettant la dispersion (décomposition) de la lumière. Lorsqu'un rayon lumineux pénètre l'eau, il y a une décomposition de la lumière car les deux milieux (air et eau) possèdent un indice de réfraction différent. Or la réfraction est fonction de la longueur d'onde, ce qui entraîne la décomposition du rayon en autant de couleurs qui le constituent.  +
Chaque couleur est caractérisée par une longueur d'onde de l'ordre du nanomètre. La longueur d’onde est la distance parcourue par l’onde lumineuse pendant la durée d’une période (deux pics sur le graphique)<br /><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Arc-en-ciel de chambre OndeCouleur.png" data-sourceimage="https://www.wikidebrouillard.org/images/b/b5/Arc-en-ciel_de_chambre_OndeCouleur.png"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Arc-en-ciel_de_chambre_OndeCouleur.png" class="image"><img alt="Arc-en-ciel de chambre OndeCouleur.png" src="/images/b/b5/Arc-en-ciel_de_chambre_OndeCouleur.png" width="262" height="206" data-file-width="262" data-file-height="206" /></a></div></div></span></div><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Arc-en-ciel de chambre LongeurOndeCouleur.png" data-sourceimage="https://www.wikidebrouillard.org/images/e/ee/Arc-en-ciel_de_chambre_LongeurOndeCouleur.png"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Arc-en-ciel_de_chambre_LongeurOndeCouleur.png" class="image"><img alt="Arc-en-ciel de chambre LongeurOndeCouleur.png" src="/images/e/ee/Arc-en-ciel_de_chambre_LongeurOndeCouleur.png" width="220" height="147" data-file-width="220" data-file-height="147" /></a></div></div></span></div><br /><br /><br />Les couleurs visibles par l'œil humain sont les couleurs dont la longueur d'onde se situe entre 380 et 740 nanomètres.<br /><br />[ < 380] ultraviolet<br /><br />[380 - 446] violet<br /><br />[446 - 520] bleu<br /><br />[520 - 565] vert<br /><br />[565 - 590] jaune<br /><br />[590 - 625] orange<br /><br />[625 - 740] rouge<br /><br />[ > 740] infrarouge<br /><br />Si on assemble tous les intervalles des couleurs que l'humain peut voir, on obtient un intervalle allant de 380 à 740 nanomètres.<br /><br /><br />La lumière blanche est polychromatique, c’est-à-dire composée de plusieurs couleurs. L'addition des couleurs de l'arc-en-ciel donne la couleur blanche. L'expérience permet la dispersion (décomposition) de la lumière : les différentes couleurs qui composent la lumière blanche ne sont pas déviées de la même façon par l'eau.<br /><br />Lorsqu'un rayon lumineux pénètre l'eau, il se produit une décomposition de la lumière car les deux milieux (air et eau) possèdent des indices de réfraction différents. Or la réfraction est fonction de la longueur d'onde, ce qui entraîne la décomposition du rayon en autant de couleurs qui le constituent.<br /><br />La lumière est brisée à la sortie de l'eau, chaque couleurs qui composent la lumière blanche ne se brisent pas sous le même angle, d'où le fait qu'elles apparaissent à des endroits différents et la formation d'un arc-en-ciel.  
Chaque espèce est importante car chacune joue un rôle dans le fonctionnement du sol. Certaines espèces décomposent la matière organique (=les végétaux et les animaux morts), d’autres servent à aérer le sol en y creusant des galeries par exemple, d’autres encore peuvent aider à la dissémination des graines... Chaque animal a un rôle très important, même les araignées et les limaces ! Par exemple les collemboles, les cloportes, tout comme les bactéries, les champignons, les vers de terre et bien d’autres décomposent les végétaux en mangeant leurs débris. C’est ce qui permet la fabrication de l’humus, la couche supérieure du sol. D’autres animaux en aérant le sol, permettent à l’eau de s’infiltrer dedans, comme les fourmis qui y creusent leur fourmilière ou les vers de terre avec leurs galeries. Les petites bêtes, comme on les nomme familièrement, sont aussi la base alimentaire de nombreux autres animaux, comme certains mammifères ou les oiseaux (les insectes sont très importants pour la bonne croissance de beaucoup d'oisillons !). <br/>  +
C'est donc bien grâce à la poussée d'Archimède que l'iceberg pourra flotter. https://fr.wikipedia.org/wiki/Glace : Glace https://fr.wikipedia.org/wiki/Pouss%C3%A9e_d%27Archim%C3%A8de : Poussée d'Archimède  +
Historiquement, la vie s’organise autour des cours d’eau : accès à la ressource en eau pour la consommation ou l’irrigation des cultures, voie de transport et de commerce, zone de pêche, force pour la production d’électricité. Or ces 60 dernières années, des constructions sont apparues de plus en plus près des rivières, augmentant ainsi le risque de dégradation lors de débordement. Les risques sont définis à partir des aléas (augmentation du niveau de l’eau) et des enjeux (constructions proches de la rivière) : s’il n’y a pas de maison dans le lit majeur de la rivière, il n’y a pas de risque à ce qu’elle se retrouve les pieds dans l’eau. Bien connaître les limites du lit majeur permet de les prendre en compte lors des politiques d’aménagement du territoire à proximité des cours d’eaux. Il faut aussi savoir qu’au sein du lit majeur, le tracé du lit mineur peut évoluer au cours du temps. Après une décrue, le tracé peut être différent de celui observé avant la crue. Ce phénomène est par exemple très visible dans les grands torrents de montagnes. C’est également le cas après une forte inondation. Ceci s’explique entre autres par une modification des zones de dépôts de sédiments (voir la fiche expérience « transport et sédimentation »). Enfin, d’autres facteurs peuvent augmenter le risque d’inondation  : - L'artificialisation des sols : moins les sols sont perméables plus l’eau va s’étendre (voir fiche expérience « les sols épongent ») ; - La modification du tracé du cours d’eau, qui va jouer sur son débit (voir fiche expérience « le reprofilage »). <br/>  +
* Le [http://fr.wikipedia.org/wiki/Scintillation_%28%C3%A9toile%29 scintillation d'une étoile] sur Wikipédia. * [http://fr.wikipedia.org/wiki/Convection La convection] sur Wikipédia.   +