Attribut:Deepen

This is a property of type Text.

Affichage de 50 pages utilisant cette propriété.
C
• Comme dit précédemment, la paille est chargée négativement. Lorsqu'on approche celle-ci du côté d'une plaque, celui-ci va se charger positivement, les charges négatives se repoussant entre elles. Ces dernières vont donc se retrouver de l'autre côté de la plaque (le côté avec l'aluminium). L'influence de la première plaque sur la boule va reproduire le même phénomène sur celle-ci qui elle-même va le reproduire sur la seconde plaque avec tout de même moins de charges. L'attraction étant plus puissante vers la première plaque, grâce à la quantité de charges plus importante, la boule s'y dirige.<br /><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon1.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/e/ed/Carillon_electrostatique_Carillon1.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon1.jpg" class="image"><img alt="Carillon electrostatique Carillon1.jpg" src="/images/e/ed/Carillon_electrostatique_Carillon1.jpg" width="342" height="245" data-file-width="342" data-file-height="245" /></a></div></div></span></div><br /><br /><br />• Lors du contact de la boule chargée positivement et de la plaque chargée négativement, il y a un transfert de charges du fait que les deux forment un seul conducteur : la boule devient chargée négativement. Elle est ensuite attirée de la même manière vers la seconde plaque pour y subir le même phénomène, et sa charge change de signe. Cela se reproduit tant que les charges des plaques sont assez fortes et différentes pour attirer la boule.<br /><br /><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon2.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/8/8f/Carillon_electrostatique_Carillon2.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon2.jpg" class="image"><img alt="Carillon electrostatique Carillon2.jpg" src="/images/8/8f/Carillon_electrostatique_Carillon2.jpg" width="241" height="157" data-file-width="241" data-file-height="157" /></a></div></div></span></div><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon3.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/e/ee/Carillon_electrostatique_Carillon3.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon3.jpg" class="image"><img alt="Carillon electrostatique Carillon3.jpg" src="/images/e/ee/Carillon_electrostatique_Carillon3.jpg" width="248" height="157" data-file-width="248" data-file-height="157" /></a></div></div></span></div><br /><br /><br />• Enfin, lorsque l'on retire la paille, la première plaque répartit ses charges positives sur toute sa surface, ce qui a pour effet d'attirer à nouveau la boule, pour qu'elle puisse faire encore quelques allers-retours jusqu'à atteindre un équilibre.<br /><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon4.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/c/c2/Carillon_electrostatique_Carillon4.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon4.jpg" class="image"><img alt="Carillon electrostatique Carillon4.jpg" src="/images/c/c2/Carillon_electrostatique_Carillon4.jpg" width="180" height="145" data-file-width="180" data-file-height="145" /></a></div></div></span></div><br/>  
De nombreuses activités nécessitent l'accès à l'eau. La découpe d'un territoire en bassins versants permet de lier ces usages et de mettre en évidence leurs relations [1]. Les Schémas d'Aménagement et de Gestion des Eaux (SAGE) ont pour objectif de concilier l'usage de l'eau pour les différentes activités humaines et pour les milieux naturels [2]. Ce sont des outils importants pour l'aménagement d'un territoire et la préservation de ses ressources. Ceux-ci ont pour rôle de réaliser un diagnostic de l'état des eaux sur le territoire, puis de fixer des objectifs et moyens. Pour les piloter, un comité est formé avec de nombreux acteurs et usagers du territoire.  +
Lorsque la catapulte est prête à être lancée, le projectile est placé sur le lanceur. L'élastique est ensuite tendu en tirant sur le bras de levier. Plus l'élastique est tendu, plus la force de lancement sera grande. Lorsque le bras de levier est relâché, l'élastique se détend, transférant l'énergie stockée dans l'élastique au projectile et le propulsant en avant.  +
Ce phénomène fait intervenir la loi des gaz parfaits, PV=nRT, avec : *P : la [https://fr.wikipedia.org/wiki/Pression pression] (Pa), *V : le [https://fr.wikipedia.org/wiki/Volume volume] du gaz (m<sup>3</sup>), *n : la [https://fr.wikipedia.org/wiki/Quantit%C3%A9_de_mati%C3%A8re quantité de matière] (mol), *R : la [https://fr.wikipedia.org/wiki/Constante_universelle_des_gaz_parfaits constante universelle des gaz parfaits] (≈ 8,314 J·K<sup>-1</sup>·mol<sup>-1</sup>), *T : la [https://fr.wikipedia.org/wiki/Temp%C3%A9rature_absolue température absolue] (K). Dans notre cas, la quantité de mol (n) et la constante (R), ne varient pas. Dans un premier temps la température augmente, la production de gaz fait varier son volume mais vu que le verre garde le même volume, la pression augmente un petit peu. Puis lorsque la flamme s’éteint la température diminue et la rétraction de l'air devenu froid, fait diminuer le volume d'air et sous l'effet de la pression, l'eau est aspirée dans le verre et une fois l'eau dans le verre la pression redevient normal.  +
=== '''Allons plus loin dans l'explication''' === L'Arduino est un microprocesseur dont les instructions sont codées dans un langage proche du C. Plus d'info sur l'article Wikipédia [http://wikipedia.org/wiki/langage_C Langage C]. En C, on déclare le type des variables avant de les utiliser : ici les int correspondent à des nombres entiers (1,2,3...), et le void correspond à une fonction non typée. Le const devant un type signifie que l'objet manipulé ne peut pas être modifié  +
=== '''Allons plus loin dans l'explication''' === Au départ, les forces exercées entre les feuilles et à l'extérieur des feuilles s'équilibrent. Lorsque l'on souffle entre les feuilles, on créé une dépression : la force s'exerçant à l'extérieur des feuilles devient plus élevée que celle s'exerçant à l'intérieur. Pour arriver à un nouvel état d'équilibre entre les forces, les feuilles se rapprochent. * [http://fr.wikipedia.org/wiki/D%C3%A9pression_%28physique%29 Dépression] sur Wikipédia.  +
La chlorophylle est un pigment vert qui joue un rôle essentiel dans la photosynthèse. La photosynthèse permet à la plante de transformer les matières organiques montées par capillarité jusqu’aux feuilles qui grâce à la lumière absorbent le gaz carbonique dans l’air et le transforme en oxygène. Le pigment majoritaire chez la feuille verte est donc la chlorophylle. C’est essentiellement à lui que l’on doit la couleur verte des feuilles.  +
On peut distinguer deux phénomènes différents. Le premier est la montée de l'eau qui entraîne les colorants, le second est la séparation des colorants pendant cette montée. Normalement, la gravité terrestre devrait empêcher l'eau de monter le long de la bande et l'eau devrait plutôt avoir tendance à descendre. Cependant il existe le phénomène de capillarité. Ce phénomène physique entre en jeu dès qu'un liquide et une surface se rencontrent. Les molécules du liquide sont plus ou moins fortement attirées selon le liquide et selon la surface en question. Dans un tube en verre, on peut voir que l'eau monte légèrement plus haut sur les bords, la surface du tube attire l'eau par capillarité. Si le tube en verre est assez fin, il fera monter de l'eau jusqu'à ce que la gravité compense cette attraction par capillarité. Ici, le papier filtre attire l'eau par ce même phénomène et la fait monter. En montant, l'eau entraîne le point coloré avec elle. Le deuxième phénomène est celui qui décompose la séparation des couleurs. Pourquoi les colorants se séparent-ils lors de leur montée? C'est tout simplement parce que tous les colorants n'ont pas la même composition, et que par conséquent ils ne réagissent pas de la même manière. Ainsi les colorants monteront à une vitesse et à une hauteur qui dépendront non seulement de leur réaction avec le papier, mais aussi de leur solubilité dans l'eau. Voilà pourquoi ils se séparent. C'est la chromatographie. Il existe de nombreuses techniques de chromatographie, et leurs applications sont multiples en chimie analytique, en médecine, dans l'industrie ou encore la police scientifique. On peut utiliser ce procédé pour connaître la composition d'un produit inconnu, ou pour rechercher la présence et mesurer la quantité d'une substance dissoute dans une autre. La chromatographie permet par exemple de déterminer la quantité de caféine contenue dans un médicament, de savoir quels acides aminés sont présents dans un aliment, de rechercher des traces d'hydrocarbures dans l'eau d'une zone de baignade ou de prouver si la peinture trouvée sur une scène de crime est la même que celle de la voiture d'un suspect.  
Plus on branche de composants en série, plus la tension qui alimente chacun des composants est faible. Les LED ne s'allument pas ou peu. Les LED ont besoin d'une tension minimale à leur borne : si elles reçoivent une tension inférieure, elles ne s'allument pas du tout. Ces observations illustrent les lois de la tension. En série, la loi d’additivité de la tension s’applique, tandis qu’en parallèle, c’est la loi d’unicité de la tension qui s’applique. Cela se traduit ainsi : *dans un branchement en série, la tension du générateur (ici la pile) est égale à la somme des tensions des dipôles (chaque composant), *dans un branchement en dérivation (c’est à dire en parallèle), la tension du générateur est identique à celle des dipôles.  +
ça marche avec n'importe quelle boisson gazeuze, y compris l'eau pétillante. la substance ajoutée (le mentos) doit juste avoir une surface pleine de micro-aspérités. Du sucre ou du sel en poudre donnent aussi le même résultat (l'intensité dépendant de la quantité ajoutée, elle peut varier d'une expérience à l'autre). D'autres bonbons sucrés donnent un résultat souvent moins spectaculaire (  +
Tu as remarqué que nos éponges, même si on les essore bien, contiennent encore de l’eau ? C’est la même chose pour le sol ! Il a une capacité à retenir de l’eau. Pour un sol, la quantité d’eau qu’il peut absorber entre le moment où il est sec et le moment où il sature (il ne peut pas contenir plus d’eau) est appelée “réserve utile”. C’est la quantité d’eau qui peut en être facilement extraite, par les racines des plantes par exemple. Celle-ci est mesurée en millimètres de hauteur d’eau, comme la pluie. Elle varie principalement selon le type de sol (graviers, sable, terre argileuse). Lorsqu’une éponge est gorgée d’eau (dès le début ou après quelques instants d’arrosage) elle n’est plus capable d’en absorber. Son coefficient de ruissellement monte alors jusqu’à 100% (toute l’eau ruisselle) ! C'est la même chose pour le sol, si la pluie est trop intense ou dure trop longtemps, il finira par saturer. Nos éponges ont des coefficients de ruissellement très différents selon leur état. De la même façon, l’inclinaison ou le relief du sol peut influer fortement sur le ruissellement. Tu peux tester cela facilement chez toi : l’eau s'écoule très rapidement sur les surfaces qui ne sont pas horizontales. Un sol en pente a un coefficient de ruissellement bien supérieur à celui d'un sol horizontal de même surface . Au contraire, si un sol comporte des bosses et des creux, ceux-ci vont ralentir l’écoulement de l’eau et l’aider à s’infiltrer.  +
https://fr.wikipedia.org/wiki/Tension_superficielle  +
Une '''loupe''' est un instrument d'optique subjectif constitué d'une lentille convexe permettant d'obtenir d'un objet une image agrandie. La loupe est la forme la plus simple du microscope optique, qui lui, est constitué de plusieurs lentilles l'objectif et l'oculaire), d'un système d'éclairage élaboré complété d'un condenseur de lumière rendant le fond uni sans image parasite, et qui répond à la définition de ''système dioptrique centré''. [http://fr.wikipedia.org/wiki/Loupe Loupe sur Wikipédia]  +
La biodiversité, définie par sa diversité (des espèces, des écosystèmes et des individus) et ses interactions, '''constitue la toile de la vie dont nous faisons partie et dont nous dépendons'''. Elle résulte d'une évolution façonnée pendant des milliards d’années par des phénomènes naturels mais aussi, et de plus en plus, par l'intervention humaine. Les relations de coopération, de prédation, de compétition entre espèces ont joué et jouent un rôle central dans cette évolution. Ces interactions sont également le moteur du fonctionnement des écosystèmes (milieux de vie) : ils produisent, font circuler, transforment, accumulent matière et énergie au travers des êtres vivants qui les constituent et de leur activité. '''Ainsi la biodiversité assure de nombreuses fonctions biologiques (on parle de services écologiques), et toutes les espèces, en tant que constituantes des écosystèmes, contribuent aux services que toutes en retirent.'''  +
Plus de 95% des espèces d’un habitat naturel sont fortement liées les unes des autres, via les réseaux trophiques. Cette proximité des espèces signifie que la disparition d’une espèce peut avoir d'importants impacts sur les autres espèces et donc sur le fonctionnement même de l'écosystème. Par exemple, les prédateurs au sommet des chaînes alimentaires ont un effet de maintien de la biodiversité. S'ils disparaissent, les espèces dont ils se nourrissaient et qu’ils régulaient vont pulluler. Par compétition, elles éliminent alors d’autres espèces avoisinantes, ce qui entraîne une cascade de conséquences... '''Ces interactions montrent également que si nous voulons protéger une espèce dans un milieu donné, il est indispensable de prendre en considération toutes celles qui font partie de son réseau trophique, donc ses proies (et ce qui les nourrit) et ses prédateurs, sans qui l'espèce peut vite devenir envahissante.'''  +
Un courant électrique est un déplacement d'ensemble de porteurs de charge électrique, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. Dans un conducteur métallique, les particules chargées et mobiles sont des électrons peu liés aux atomes auxquels ils appartiennent (on dit que ces électrons se trouvent dans la bande de conduction). On peut considérer qu'ils se déplacent facilement dans le matériau métallique. Lorsqu'une différence de potentiel est appliquée aux extrémités du conducteur, elle provoque le déplacement de ces électrons, ce que l'on appelle courant électrique. Le réseau des atomes contient des ions positifs : les atomes qui ont perdu un électron. Mais ces derniers, prisonniers du réseau par les liaisons métalliques, sont quasiment immobiles et ne participent que de manière infime à la circulation du courant. Un isolant, aussi appelé matériau diélectrique, est une partie d'un composant ou un organe ayant pour propriété d'interdire le passage de tout courant électrique entre deux parties conductrices. Un isolant possède peu de charges libres, elles y sont piégées, contrairement à un matériau conducteur où les charges sont nombreuses et libres de se déplacer sous l'action d'un champ électromagnétique. La capacité d'un matériau à conduire plus ou moins bien les charges électriques est appelée "conductivité électrique".  +
Pourquoi certains plastiques flottent et d'autres non ? Cela dépend de la densité du plastique : pour un même volume de plastique et d'eau, certains morceaux vont être plus ou moins lourds (par rapport à l'eau) selon leur composition. Les morceaux les plus denses iront au fond de la bassine, et les moins denses restent en surface.  +
Pourquoi telle couleur est associée à telle température? L'augmentation de la température crée une agitation des atomes, ils se choquent les uns les autres et cela excite leurs électrons : dans certains cas, un électron récupère de l'énergie venant du choc. Ensuite, l'électron reperd cette énergie, en émettant un photon. Plus la température est élevée, plus le mouvement est puissant, plus l'énergie des chocs est grande, et plus les électrons sont excités. Donc l'énergie lumineuse augmente avec la température. Or la couleur d'un photon correspond à son énergie. Un photon infra-rouge (IR) a moins d'énergie qu'un photon rouge, qui en a moins qu'un jaune, qui en a moins qu'un bleu, qui en a moins qu'un ultra-violet... À température ambiante, les photons émis sont infra-rouges et invisibles. En augmentant la température, un mélange de photons IR et de photons rouges commence à être émis (cas du fer porté "au rouge"), puis en montant encore on obtient un mélange IR/rouge/jaune (on voit une couleur orangée), puis un mélange de tout le spectre visible (on voit du blanc), puis un mélange vu comme bleu, etc. On peut associer le phénomène du métal chauffé à l'observation des astres. On peut en effet déterminer la température des étoiles dont on connaît la couleur. Par exemple une étoile bleue comme Rigel a une température de surface de 20000°C.  +
L'étalement de l'encre et la dispersion des différentes couleurs est une illustration simple du principe de chromatographie. Cette technique est utilisée en laboratoire pour séparer les différents composants d'un mélange. Lors d'une chromatographie, l'échantillon est entraîné par une phase mobile, appelée éluant (ici, l'eau) à travers une phase fixe (ici, le papier filtre). La phase fixe retient plus ou moins fortement les différents composants de l'échantillon qui vont alors migrer à des vitesses différentes. On peut ainsi les séparer. Souvent l'échantillon est comparé à une solution dont les substances sont déjà connues, ce qui permet d'identifier les composants de l'échantillon à analyser.  +
Le chou rouge (''Brassica oleracea var.capitata f.rubra'') contient des colorants ('''les anthocyanes''') qui ont la propriété de changer de couleur en fonction du pH. Il est de ce fait le plus populaire des indicateurs naturels de pH et peut être utilisé pour enseigner les réactions acide-base à l'école. Pour extraire ces colorants, il suffit de porter à ébullition de l'eau contenant des feuilles de chou rouge, donc de faire une décoction de chou rouge.  +
Le sel de cuisine est composé de molécules de chlorure de sodium (NaCl). Quand on met du sel dans l'eau, celle-ci dissocie la molécule NaCl en deux parties, sodium et chlore. Lors de cette séparation, ces derniers subissent un changement,c'est-à-dire que le sodium donne un électron au chlore. De cette manière,les deux atomes ne sont plus électriquement neutres et forment ce que l'on appelle des ions. Ce sont les ions qui rendent l’eau conductrice. Les ions positifs – ou cations – migrent vers l’électrode négative de la pile, et les ions négatifs – ou anion – migrent vers l’électrode positive de la pile.  +
On a vu qu'une rivière pouvait sortir de son lit lors des crues et causer des inondations. En réalité, la rivière s'écoule au quotidien dans ce qu'on appelle le lit mineur [1]. Lors des crues, elle va occuper son lit majeur, qui peut être bien plus vaste et recouvrir des prairies ou des zones humides qui sont situées sur les bords de la rivière. En aménagement, on parle de zone inondable lorsque l'on se situe dans le lit majeur d'un cours d'eau. La plupart des cours d'eau ne se contentent pas de s'écouler à la même vitesse tout du long. Celle-ci va varier, notamment avec la profondeur. Lorsque la rivière est profonde, l'eau s'écoule lentement. On parle de zone de mouille. Au contraire, lorsque la profondeur est faible l'eau va avancer très vite, souvent en slalomant entre les rochers ou galets. On appelle cela un radier. Sur une rivière qui n'a pas subit d'aménagement, on observe souvent une alternance de mouilles et de radiers le long du tracé. Dans les méandres, c'est l'extérieur du virage qui est le plus profond et l'intérieur qui accumule les galets. Certains cours d'eau ont des tronçons qui ne semblent pas connectés au reste de la rivière ou qui ne s'écoulent pas. On parle alors de bras mort. Ceux-ci peuvent être un formidable refuge de biodiversité [3]. Les poissons et autres animaux peuvent venir s'y reposer à l'abri du courant. Pour qu'une rivière soit en bonne santé et puisse accueillir de nombreuses espèces différentes, il est nécessaire qu'elle possède des habitats variés.  +
L'abbé René-Just Haüy avait remarqué la constance des formes des individus d'une espèce végétale. Alors que les cristaux, dont la composition ne change jamais, présentaient des formes indéfiniment variables. Il observa qu'en cassant des cristaux de calcite de différentes formes, les fragments obtenus avaient toujours la même forme géométrique. L'abbé Haüy imagina que chacune des formes observées était composée d'une multitude de solides infiniment petits, ayant chacun les mêmes propriétés géométriques, physiques et chimiques que la forme elle-même. Un cristal apparaît donc constitué par un agencement de briques élémentaires, tout comme une maison peut être constituée par un agencement de briques. De la même manière, par agencement de briques, toutes identiques, on peut construire une cathédrale ou une maison. Encore plus... Les travaux de Haüy montrent que plusieurs formes de briques élémentaires sont nécessaires pour décrire l'ensemble des cristaux. Certaines formes sont simples, comme le cube, alors que d'autres semblent plus compliquées, comme le rhomboèdre. Haüy reconnut 6 genres de briques élémentaires, mais aujourd'hui on en admet 7. On parle des 7 systèmes cristallins : cubique, quadratique, orthorhombique, monoclinique, triclinique, rhomboédrique, hexagonal.  +
Evidemment, cette catapulte n'est pas universelle. Vous pouvez l'adapter seulement le moteur que vous avez à disposition. Pour le moteur, il faut qu'il ait une bonne puissance mais qu'il possède également un bon couple. Si il n'y a pas suffisamment de couple alors le moteur ne supportera pas le poids de l'objet; ce qui ralentit sa vitesse de rotation. Dans notre catapulte, afin d'améliorer le couple, on y a ajouter 2 engrenages. Le principe est de créer une accélération du couple (vis à vis du rapport de réduction) Pour le bras, le design du bras est libre à chacun suivant les besoins, le type de projectiles qu'on veut lancer. Pour finir, le bâti n'est pas indispensable au fonctionnement de la catapulte mais ajoute un aspect esthétique intéressant.  +
=== '''Allons plus loin dans l'explication''' === Le vent c’est tout d'abord de l’air en mouvement. L’air se trouve partout autour de nous. L’air chaud prend plus de place que l’air froid, il est ainsi plus léger, donc il monte. L’air froid prend alors la place de l’air chaud. La différence de température crée le vent. Le vent sur Terre est créé par : - Le réchauffement de l’air par le soleil. La terre étant ronde, la température n'est pas identique partout : à l'équateur il fait plus chaud qu'aux pôles. Il y a donc une différence de température. - La rotation de la Terre permet aux colonnes d'air de températures différentes de se rejoindre et de créer du vent. De plus, comme l'air est un fluide qui entoure la Terre, la rotation de celle-ci entraîne des vents importants à de grandes distances au-dessus de nos têtes.  +
Bonnes pratiques pour configurer votre diffusion : # Configurez votre diffusion en mode lien permanent # Diffusez votre émission test pour vérifier si tout fonctionne bien, stoppez votre diffusion dans OBS # Lorsque tout est prêt, retournez dans la configuration de votre diffusion en direct et cochez '''Publier une rediffusion automatiquement à la fin du direct''' # Lancez votre live à partir d'OBS  +
Pour aller plus loin dans la doc : https://ayushsharma82.github.io/ESP-DASH  +
Le son est une '''vibration'''. Le déplacement du son est caractérisé par une '''onde'''. Ces ondes, dites '''mécaniques''', ont besoin d'un milieu dans lequel se déplacer par exemple dans l'eau, dans l'air, dans les métaux etc.. Les ondes sonores se déplacent différemment selon les propriétés de leur milieu de propagation. Ici, la ficelle est plus dense que l'air. Alors, le son est perçu plus fort car la vibration transmise au niveau de l'oreille (externe, moyenne et interne) est plus intense.  +
*Lorsque l'on trouve du cuivre dans la solution de vinaigre, il n'est pas sous sa forme métallique, on appelle cela des '''ions'''. Les ions cuivre sont '''chargés positivement'''. En chimie, le symbole du cuivre s'écrit '''Cu''', les ions du cuivre s'écrivent '''Cu<sup>2+</sup>''' (Ils ont perdu 2 charges négatives) et ils s'appellent les '''ions "cuivriques"'''. L'acier contient du fer, le fer s'écrit '''Fe'''. Lorsque les ions cuivriques rencontrent les atomes de fer, ils redeviennent du cuivre. Les ions cuivriques prennent les charges qui leur manquent et redeviennent neutres sous la forme métallique Cu (cuivre). En revanche pour chaque atome de cuivre devenu métallique, un atome de fer devient un '''ion ferreux Fe<sup>++</sup>'''. *On dit que le cuivre est un '''oxydant''' et que le fer est un '''réducteur'''. Nous venons de faire une réaction chimique qu'on appelle '''oxydo-réduction'''. *En somme, l'ion cuivrique est réduit par le fer en cuivre et le fer est oxydé par l'ion cuivrique en ion ferreux. *L'équation d'oxydo-réduction s'écrit alors comme ceci : '''Cu<sup>2+</sup> + Fe → Cu + Fe<sup>2+</sup>'''   +
La technique du cyanotype fut inventée en 1842 par le scientifique et astronome anglais John Frederick William Herschel (1792-1871) lorsqu'il découvrit que sous l’action de la lumière, les sels ferriques pouvaient se transformer en sels ferreux. William Herschel utilisait le cyanotype pour la copie de dessins. Plus tard, ce procédé fut utilisé pour faire des photogrammes. Anna Atkins (1799-1871), botaniste britannique, va être la première à utiliser les cyanotypes dans son ouvrage : "British Algae : cyanotypes impressions". Elle y présente notamment des herbiers sur les algues ainsi que sur les fougères. Elle le léguera en 1865 au British Museum.  +
Un autre phénomène, l'osmose, peut être lié à l’expérience. En effet l'osmose est un moyen pour la plante de se nourrir grâce au sel contenu dans ses racines, pour davantage d'informations techniques, reportez vous à ce [http://users.skynet.be/chr_loockx_sciences/exp_osmose_4.htm travail pratique]. Le principe est simple, le sel attire l'eau et ainsi les aliments des plantes. Prenons pour exemple une barre de fer, et trempons la dans l'eau. La barre de fer ne contenant pas de sel, l'eau ne monte donc pas. Au contraire , une plante contenant du sel, fera monté l'eau dans ses canaux grâce au principe de l'osmose et permettra à la plante de se nourrir.  +
D
Optimisation : - Utiliser d'autres connecteurs - Sur batterie, sur secteur  +
Les API permettent aux applications d'interagir les unes avec les autres. Par exemple, une application peut demander des données à une autre application et obtenir des données en retour.  +
S’il y a de la matière, il y a de l’énergie. Le monde étant rempli de matière, il est également rempli d’énergie. Et cette énergie ne se crée pas et elle ne disparaît pas. Elle se transforme pour passer d’un système à un autre, d’un état à un autre. Ici, la bille est faite de matière donc elle contient en son sein de l’énergie. Plus sa masse sera élevée, plus elle aura d’énergie stockée. De plus, en tenant la bille à une certaine hauteur, elle a accumulé de l’énergie qu’on appelle énergie potentielle gravitationnelle. Cette énergie dépend de la position de l’objet. Plus on lâchera haut la bille, plus elle aura stocké d’énergie. Quand on lâche la bille, toute cette énergie cumulée va se transformer en vitesse, en énergie cinétique (= énergie de mouvement). Puis lorsque la bille touche la surface de la farine, sa vitesse est arrêtée mais l’énergie n’a pas disparue. Elle s’est transmise aux grains de farine qui se sont déplacés ; aux molécules d’air qui ont formé un son. L’énergie a bien été conservée ; elle a seulement changé de forme.  +
Notre cerveau ne représente que 2% de ton corps, mais il utilise 15 à 20 % de l’énergie que nous consommons par jour ! '''La catégorisation (processus de lecture/tri rapide/simplifié) des informations lui permet d'économiser de l’énergie'''. Ainsi, si nos oreilles lui font parvenir le mot « sapin », il va puiser dans notre mémoire pour trouver rapidement les informations les plus représentatives et les mieux partagées par les humains d’une même culture : * une image mentale schématique : un sapin = trois triangles superposés + un rectangle ; * un ensemble de mots se rapportant au sapin défini par la culture et le contexte : arbre, Noël, cadeaux, hiver, bois, forêt…  +
En résumé, on peut observer que dans cette expérience, le son est sous la forme d'une <u>'''vibration'''</u> et que celle-ci <u>'''se propage'''</u> toujours dans la matière. Ici dans l’eau.  +
<nowiki>L'''a persistance rétinienne :''' La persistance rétinienne est un phénomène qui consiste pour l'œil et le cerveau à superposer une image qui vient d'être vue à l'image que l'on est en train de voir. La persistance rétinienne est plus marquée et plus longue si l'image observée est lumineuse. Nous pouvons comparer notre expérience à ce que l'on observe sur un écran de téléviseur. A nos yeux l'image semble stable, elle ne clignote pas. Or en réalité l'écran n'émet les images que par intermittence, mais notre œil et notre cerveau ne perçoivent pas les interruptions car les images s'enchaînent trop vite.<br /><br />''[https://fr.wikipedia.org/wiki/Persistance_r%C3%A9tinienne [1]] La persistance rétinienne sur Wikipédia''<br /><br /><br/><br /><br />*'''La somme des couleurs de l'arc en ciel compose "le blanc" :''' La lumière blanche est la somme de la multitude de couleurs présentes dans l'arc en ciel. En effet, nous avons ici colorié sept segments de couleurs différentes, mais en fait l'arc en ciel est composé d'un nombre incalculable de couleurs. Lorsque l'on additionne ces couleurs, on obtient le blanc pur. C'est pour cela qu'en faisant tourner très vite le disque de couleurs on croit le voir blanc.<br /><br />''[https://fr.wikipedia.org/wiki/Spectre_visible [2]] Le spectre visible sur Wikipédia''</nowiki>  +
En fonction de la turbidité de l’eau, des organismes différents vont se développer. En effet, certains préfèrent les eaux sombres, d’autres plus claires, plus ou moins riches en matières organiques. La présence de matières organiques en suspension influe sur la présence de certains organismes photosynthétiques qui utilisent la lumière comme source d’énergie, en particulier les algues et les autres plantes aquatiques.  +
L'illusion d'optique résulte d'une mauvaise interprétation par le système visuel des informations qui lui parviennent. Le système visuel ne fonctionne pas comme un instrument de mesure, mais comme un moyen d'interagir efficacement avec l'environnement. Dans la vie quotidienne, en cas de doute, un changement de point de vue donne une vision plus exacte de la réalité. Dans les illusions visuelles, cette possibilité est bloquée, créant une image faussée de la réalité, y compris en faisant apparaître un objet inexistant, ou rendant « invisible » un objet pourtant présent. https://fr.wikipedia.org/wiki/Illusion_d%27optique  +
Les poussières microscopiques présentes dans l’air sous forme solide, liquide ou gazeuse (substances chimiques, micro-organismes, pollens, gaz...) sont en général rejetées par l’organisme. Mais certaines d’entre elles arrivent parfois à pénétrer dans les poumons ou à l’intérieur du corps, ce qui peut avoir des conséquences sur la santé. Ainsi certaines maladies moins fréquentes il y a quelques décennies (allergie, asthme...) se sont développées avec l’accroissement des pollutions (industrielles, agricoles, domestiques) liées aux produits de synthèse qui nous entourent (pesticides, produits d’entretien, colles, plastiques...), ces derniers contenant des matières parfois dangereuses pour l’environnement et la santé. Une courte exposition à fortes doses à un ou plusieurs polluants peut entraîner des irritations, des nausées, des intoxications... Une exposition longue durée à faible dose à certaines substances peut quant à elle entraîner des allergies ou des maladies respiratoires (asthme...), voire dans les cas les plus sévères des troubles neurologiques, hormonaux (problèmes de fertilité, d'obésité) ou des risques de cancers. L’influence du tabac : la fumée de cigarette est constituée multitudes de microparticules qui entraînent un dysfonctionnement de l’ensemble respiratoire au fil des années. Les substances nocives et irritantes qu’elle contient diminuent la ventilation, les broches s’obstruent, le tissu pulmonaire perd de son élasticité et diverses pathologies apparaissent : bronchites, infections, asthme, insuffisance respiratoire, voire un cancer.  +
La formation de la rouille est appelée la corrosion. La corrosion est l'altération d'un matériau par réaction chimique avec un oxydant. Les conditions nécessaires à la réalisation de ce phénomène sont la présence d'eau (H<sub>2</sub>O) et de dioxygène (O<sub>2</sub>).  +
Nous venons de voir le rôle détaillé de la biodiversité du sol dans le recyclage des feuilles mortes, mais elle ne se limite pas à ça. '''<u>La biodiversité des sols a 3 grandes fonctions :</u>''' *'''Elle RECYCLE '''les matières organiques, végétales mais aussi animales jusqu’à minéralisation ; *'''Elle RÉGULE''' le sol (via la prédation...), le cycle de l’eau ; *'''Elle STRUCTURE''' le sol, elle le forme, le maintien, l’aère, l’assemble. <br/> '''<u>Ainsi, du fait de ses fonctions, les humains tirent nombreux services de la biodiversité du sol (on parle de services écologiques) :</u>''' *'''des services de « support » ''': recyclage des nutriments (''cycle des nutriments, du carbone)'', formation et fertilité des sols ''(altération des roches ; dégradation de la matière organique)''...     *'''des services  de « régulation » :''' **'''régulation de la qualité et quantité d’eau''' : épuration, stockage et rétention contre les inondations ''(l’eau s’infiltre beaucoup plus facilement dans le sol quand il y a des galeries des vers de terre''),                 **'''régulation des populations d’organismes du sol et des maladies des plantes :''' chaînes alimentaires et réseaux trophiques ''(prédation…) ;'' protection des cultures ''(lutte     biologique : actions des lombrics sur les nématodes parasites)…'' '''   ''' **'''régulation du climat'''  ''(émission et absorption de gaz à effet de serre)'' '''   ''' **'''contrôle de l’érosion '''(''les turricules des vers de terre (tortillons de terre rejetés à la surface du sol) deviennent une barrière physique au ruissellement en surface'')   <br/> *'''des services de « production »''' : source de nourriture, de biomasse végétale ''(via les interactions de symbiose qui aident les plantes à pousser)'', habitat, refuge, source de médicaments (''issus des gènes des micro-organismes du sol)''…         *'''des services « culturels »''' : patrimoine géologique, archéologique, récréatif, éducatif, cognitif ''(recherche...)''  
'''Qu’est-ce qui permet de dire qu’une espèce fait partie des organismes du sol ?''' Tous les habitants du sol ne vivent pas forcément dans le sol. Et à l’inverse, tout ce qui touche le sol ne fait pas forcément partie des habitants du sol (sinon, nous, humains, en ferions partie) ! Par contre nous sommes toutes et tous dépendants du sol (en tant que support, base de notre alimentation…). Ainsi, les chercheurs s’accordent à dire que '''la biodiversité du sol regroupe l'ensemble des formes de vie qui présentent au moins un stade actif de leur cycle biologique dans le sol. Elle inclut les habitants de la matrice du sol ainsi que ceux de la litière et des bois morts en décomposition.''' Toutes ces espèces, quelle que soit leur taille, interagissent directement avec le sol (via leur habitat, leur reproduction, leur alimentation...), le modèlent, agissent sur sa texture (proportion d’éléments minéraux dans un sol : sables, limons, argiles), sa structure (la taille et l’organisation des particules de sol entre elles), sa composition (les différentes couches de sol). Cette biodiversité du sol est encore assez peu connue, mais elle a un rôle très important. C’est pour cela qu’il est important de la protéger, elle et son habitat. '''<u>Ainsi, parmi la liste des espèces proposées dans l’étape 4 - partie 2</u> :''' *'''<u>font partie des habitants du sol</u> :''' **les moisissures, les bactéries, les micro-algues, les enchytréides (vivent dans le sol), **les renards, les taupes, les vipères, les castors, les lapins, les souris (ont leurs terriers dans le sol), **les chênes et les marguerites (ont leurs racines dans le sol et s’y nourrissent). *'''<u>ne font pas partie des habitants du sol</u>''' : les poules, les chats, les cerfs, les pigeons, les moustiques, les libellules, les chiens, les abeilles (ils n’ont pas d’interactions directes avec le sol, excepté y trouver parfois leur nourriture).  +
Pour pouvoir se développer, l’être humain a depuis toujours utilisé l’environnement qui l’entourait. Il s’est notamment nourrit d’animaux (la chasse) et de plantes (la cueillette), il a utilisé la fourrure de certaines espèces animales pour se vêtir et avoir chaud. Depuis le siècle dernier, l’humain transforme des milieux naturels (forêts, zones humides, cours d’eau…) pour les exploiter, pouvoir faire de l'agriculture ou pour étendre les villes, les routes, construire des barrages, l’exploitation de mines... Ces activités humaines détruisent ou fragmentent les forêts qui abritent de nombreux animaux et végétaux, menaçant leurs survies. Dans des milieux naturels fragmentés, les pandas, comme de nombreuses autres espèces, ne peuvent plus se déplacer pour trouver un partenaire, un nouveau territoire ou de la nourriture. Pour lutter contre ce drame écologique, de nombreuses structures (associations, conservatoires, zoos…) se mettent en place pour protéger ou restaurer les espèces et les milieux naturels.  +
On peut par exemple installer une "barrière" pour retenir le sable et bloquer l'eau à l'aide de graviers, de plaques de carton, de barrages de bâtons... Une autre stratégie possible consiste à surélever les constructions en les installant sur un support bâti sur pilotis (les bâtons plantés dans le sable) pour qu'elle ne touchent pas l'eau, ou sur des fondations renforcées et hautes qui résisteront ou freiineront l'infiltration de l'eau (graviers, cartons...). Il est également possible de construire des habitations flottantes en installant les pots sur des radeaux ou des pontons (bouchons de liège attachés par de la ficelle ou autre matériaux flottants). Certaines équipes ont pu décider de retirer les pots de yaourt du sable afin qu'ils ne soient ni renversés ni mouillés par la montée des eaux. Cela permet aussi de gagner le défi ! Il est interéssant dans ce défi de comparer non seulement l'efficacité des solutions choisies, mais aussi le coût et la complexité de leur mise en place : faut-il utiliser beaucoup de matériaux, construire de nombreux équipements, modifier beaucoup le paysage d'origine ?  +
Pour mesurer la sécheresse les scientifiques utilisent plusieurs indicateurs. Le SPI (de l'anglais Standardized Precipitation Index) est un indice permettant de mesurer la sécheresse météorologique. Il s’agit d’un indice de probabilité qui repose seulement sur les précipitations. Les probabilités sont standardisées de sorte qu’un SPI de 0 indique une quantité de précipitation médiane (par rapport à une climatologie moyenne de référence, calculée sur 30 ans). L’indice est négatif pour les sécheresses, et positif pour les conditions humides Le SWI (de l’anglais Soil Wetness Index ) est un indice d’humidité des sols. Il représente, sur une profondeur d’environ deux mètres, l’état de la réserve en eau du sol par rapport à la réserve utile (eau disponible pour l’alimentation des plantes). Lorsque l'indice d'humidité des sols (SWI) est voisin de 1, le sol est humide (supérieur à 1, le SWI indique que le sol tend vers la saturation). Inversement, lorsqu'il tend vers 0, le sol est en état de stress hydrique (inférieur à 0, il indique que le sol est très sec).  +
L'air est composé de gaz (azote, oxygène, des traces d'autres gaz). Un gaz est constitué de molécules. La masse d'une molécule est constante mais avec la chaleur son volume augmente. Donc le rapport entre la masse et le volume (densité) diminue. Exemple numerique: Une mole d'azote pèse 28 g. Une mole d'azote à 0°C occupe 22,4 litre. Sa masse volumique est 28 / 22,4 = 1,25 kg / m3 ou 1,25 g/L Loi de Mariotte : PV/T = Cste P = Pression atmosphérique (Pa ou bar) V = volume (kg/m3 ou g/L) T = Température (K) La même mole à 50°C (293 K) occupe 22,4 * (273 + 50 ) / 273 = 26, 5 L Sa masse volumique à 50° est 28 / 26,5 = 1,056 kg / m3 ou 1,056 g/L La densité (masse volumique) de la molécule d'azote passe de '''1,25 g/L''' à 0° à '''1,056 g/L''' à 50°  +
E
=== '''Allons plus loin dans l'explication''' === Toute matière est constituée d'atomes qui comportent des charges électriques positives (les protons) et négatives (les électrons). Les électrons sont libres, ils ont la capacité de se déplacer s'ils sont attirés par une charge positive. Lorsque l'on frotte le ballon sur les cheveux ou un pull en laine, des électrons se déplacent des cheveux (ou de la laine) vers le ballon. Comme les électrons sont des charges négatives, les cheveux (ou la laine), qui perdent des électrons, se chargent positivement, tandis que le ballon, qui gagne des électrons, se charge négativement. Il s'agit d'un phénomène d'électrisation par frottement. L'eau du robinet est électriquement neutre, elle contient autant de charges positives et négatives, qui s'équilibrent entre elles. Mais quand on approche un objet chargé électriquement d'un objet neutre, il se produit un phénomène d'électrisation par induction : l'objet chargé attire les charges de signe opposé qui sont présentes dans l'objet neutre. Ici le ballon chargé négativement attire les charges positives contenues dans l'eau. Le filet d'eau est donc dévié vers le ballon, jusqu'à ce que les électrons, en se déplaçant du ballon vers l'eau, aient rétabli l'équilibre. Lorsqu'on les frotte, certains matériaux ont plus tendance à donner des électrons, et donc à se charger positivement, et certains matériaux ont plus tendance à recevoir des électrons, et donc à se charger négativement. Pour savoir si un matériau se charge positivement ou négativement en cas d'électrisation par frottement, on peut consulter une liste triboélectrique.  +
'''Le réchauffement climatique est un processus naturel.''' Les gaz présents dans l'atmosphère filtres les rayons infra-rouges, nous protégeant ainsi naturellement du réchauffement excessif de la planète. Ces rayons sont stoppés pour la plupart par l'atmosphère ou encore les nuages. Néanmoins, tous les rayons infra-rouges ne sont pas stoppés. Bon nombre se réfléchissent sur le sol, ce qui nous permet d'avoir une moyenne de température sur la planète, d'environ 15°C. Certains gaz (CO<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>O, ...) présents naturellement dans l'atmosphère, sont aussi produits en grand quantité par l'Homme (transports, agriculutrue intensive, industries, ...). Ces gaz sont responsables de l'accélaration du réchauffement climatique. Ils vont empêcher les infra-rouges, de quitter l'atmosphère lorsqu'ils se sont réfléchis sur le sol de la planète. Emrpisonnant ainsi d'avantage de gaz à effet de serre dans l'atmosphère.  +
La molécule du pigment qui colore l'encre a été modifiée par l'eau chaude, le mélange est alors devenu incolore grâce à la forme basique de l’eau. L’eau est amphotère, c’est à dire qu’elle se comporte en acide en présence de base, et en base en présence d’acide. Ici, le pigment de l’encre est un acide, donc l’eau adopte un comportement basique et fait disparaître la couleur bleue en modifiant la molécule du pigment. L’eau chaude accélère la réaction. Sans chaleur, la réaction serait beaucoup plus longue. Ici, la chaleur est donc un catalyseur. Dans cette expérience, les molécules modifiées sont sensibles au pH (autrement dit à l'acidité du milieu). Quand on ajoute le vinaigre qui est un acide, la solution devient acide, et les molécules subissent une nouvelle transformation : elles reprennent leur état d’origine et le mélange est à nouveau bleu. Quand on ajoute du bicarbonate de sodium, il réagit avec le mélange. L’introduction d’une base (le bicarbonate), permet à l’encre de re-disparaître, car on neutralise l’acidité du vinaigre et on obtient une solution basique permettant la disparition de l’encre. Si on ajoute encore du vinaigre, il va se trouver en plus grande quantité que le bicarbonate de sodium (il n'y a plus assez de bicarbonate de sodium pour « occuper » tout le vinaigre). Le vinaigre va donc une fois de plus réagir avec la molécule modifiée, qui retrouvera son état d'origine pour colorer le mélange en bleu.  +