Recherche par propriété

Cette page fournit une simple interface de navigation pour trouver des entités décrites par une propriété et une valeur nommée. D’autres interfaces de recherche disponibles comprennent la page recherche de propriété, et le constructeur de requêtes ask.

Recherche par propriété

Une liste de toutes les pages qui ont la propriété « Deepen » avec la valeur « Optimisation : utiliser d'autre connecteur Sur batterie, sur secteur ». Puisqu’il n’y a que quelques résultats, les valeurs proches sont également affichées.

Affichage de 10 résultats à partir du n°1.

Voir (20 précédentes | 20 suivantes) (20 | 50 | 100 | 250 | 500).


    

Liste de résultats

  • Dessine-moi un sapin  + (Notre cerveau ne représente que 2% de ton Notre cerveau ne représente que 2% de ton corps, mais il utilise 15 à 20 % de l’énergie que nous consommons par jour ! '''La catégorisation (processus de lecture/tri rapide/simplifié) des informations lui permet d'économiser de l’énergie'''. Ainsi, si nos oreilles lui font parvenir le mot « sapin », il va puiser dans notre mémoire pour trouver rapidement les informations les plus représentatives et les mieux partagées par les humains d’une même culture : * une image mentale schématique : un sapin = trois triangles superposés + un rectangle ; * un ensemble de mots se rapportant au sapin défini par la culture et le contexte : arbre, Noël, cadeaux, hiver, bois, forêt… arbre, Noël, cadeaux, hiver, bois, forêt…)
  • Fort Boyard Jeu des bâtonnets avec Arduino  + (Nous avons écrit un programme sur un ordinateur, qui est traduit et envoyé à l'Arduino dans un langage machine qu'il peut comprendre.)
  • Décomposition d'une feuille au sol  + (Nous venons de voir le rôle détaillé de laNous venons de voir le rôle détaillé de la biodiversité du sol dans le recyclage des feuilles mortes, mais elle ne se limite pas à ça. '''La biodiversité des sols a 3 grandes fonctions :''' *'''Elle RECYCLE '''les matières organiques, végétales mais aussi animales jusqu’à minéralisation ; *'''Elle RÉGULE''' le sol (via la prédation...), le cycle de l’eau ; *'''Elle STRUCTURE''' le sol, elle le forme, le maintien, l’aère, l’assemble.
    '''Ainsi, du fait de ses fonctions, les humains tirent nombreux services de la biodiversité du sol (on parle de services écologiques) :''' *'''des services de « support » ''': recyclage des nutriments (''cycle des nutriments, du carbone)'', formation et fertilité des sols ''(altération des roches ; dégradation de la matière organique)''...     *'''des services  de « régulation » :''' **'''régulation de la qualité et quantité d’eau''' : épuration, stockage et rétention contre les inondations ''(l’eau s’infiltre beaucoup plus facilement dans le sol quand il y a des galeries des vers de terre''),                 **'''régulation des populations d’organismes du sol et des maladies des plantes :''' chaînes alimentaires et réseaux trophiques ''(prédation…) ;'' protection des cultures ''(lutte     biologique : actions des lombrics sur les nématodes parasites)…'' '''   ''' **'''régulation du climat'''  ''(émission et absorption de gaz à effet de serre)'' '''   ''' **'''contrôle de l’érosion '''(''les turricules des vers de terre (tortillons de terre rejetés à la surface du sol) deviennent une barrière physique au ruissellement en surface'')  
    *'''des services de « production »''' : source de nourriture, de biomasse végétale ''(via les interactions de symbiose qui aident les plantes à pousser)'', habitat, refuge, source de médicaments (''issus des gènes des micro-organismes du sol)''…         *'''des services « culturels »''' : patrimoine géologique, archéologique, récréatif, éducatif, cognitif ''(recherche...)''
    ne géologique, archéologique, récréatif, éducatif, cognitif ''(recherche...)'')
  • Cours d'eau naturel et cours d'eau reprofilé  + (On a vu qu'une rivière pouvait sortir de sOn a vu qu'une rivière pouvait sortir de son lit lors des crues et causer des inondations. En réalité, la rivière s'écoule au quotidien dans ce qu'on appelle le lit mineur [1]. Lors des crues, elle va occuper son lit majeur, qui peut être bien plus vaste et recouvrir des prairies ou des zones humides qui sont situées sur les bords de la rivière. En aménagement, on parle de zone inondable lorsque l'on se situe dans le lit majeur d'un cours d'eau. La plupart des cours d'eau ne se contentent pas de s'écouler à la même vitesse tout du long. Celle-ci va varier, notamment avec la profondeur. Lorsque la rivière est profonde, l'eau s'écoule lentement. On parle de zone de mouille. Au contraire, lorsque la profondeur est faible l'eau va avancer très vite, souvent en slalomant entre les rochers ou galets. On appelle cela un radier. Sur une rivière qui n'a pas subit d'aménagement, on observe souvent une alternance de mouilles et de radiers le long du tracé. Dans les méandres, c'est l'extérieur du virage qui est le plus profond et l'intérieur qui accumule les galets. Certains cours d'eau ont des tronçons qui ne semblent pas connectés au reste de la rivière ou qui ne s'écoulent pas. On parle alors de bras mort. Ceux-ci peuvent être un formidable refuge de biodiversité [3]. Les poissons et autres animaux peuvent venir s'y reposer à l'abri du courant. Pour qu'une rivière soit en bonne santé et puisse accueillir de nombreuses espèces différentes, il est nécessaire qu'elle possède des habitats variés.saire qu'elle possède des habitats variés.)
  • Équilibriste  + (On appelle centre de gravité un point théoOn appelle centre de gravité un point théorique sur lequel on peut considérer que la force de gravité s'applique sur les objets (en realité elle s'applique partout sur l'objet, ce point est un point purement théorique utilisé en mécanique newtonienne). La position du centre de gravité d'un objet est dépendante du poids de l'objet, de la répartition du poids dans l'objet et de la forme de l'objet. La gravité terrestre peut se représenter par une flèche qui s'applique au niveau du centre de gravité des objets et se dirige vers le centre de la Terre. (Idem, c'est un concept purement théorique). On appelle surface de sustentation la surface théorique dans laquelle doit passer la flèche de la gravité terrestre qui s'applique sur le centre de gravité de l'objet pour que l'objet tienne en équilibre. (Théorique, encore une fois). Si la flèche qui représente la force de gravité qui s'applique sur ce centre de gravité passe par la surface de sustentation de l'objet, alors l'objet tient en équilibre. Si la flèche passe en dehors de la surface de sustentation, alors l'objet est hors équilibre, il tombe. Dans l'équilibriste, on accroche du poids au niveau du bouchon avec des pics à brochette. C'est une façon de faire passer le centre de gravité en dessous du cure dent. Il est presque impossible de faire tenir un bouchon en équilibre sur un cure dent seul. Plus les bras sont longs, plus le poids situé au niveau des bras est élevé et plus il devient difficile de trouver une position dans laquelle l'objet ne tiendra pas en équilibre. Il est possible de faire une expérience complémentaire avec une chaise et une planche de bois. Poser la planche de bois sur le sol et la chaise par dessus. Le centre de gravité se situe quelque part dans le cube formé par les 4 pieds de la chaise et la surface de sustentation est le carré dessiné au sol par les 4 pieds. Quand on soulève un coté de la chaise on déplace la surface de sustentation. Elle ne coincide plus avec le carré dessiné par les 4 pieds de la chaise. Plus le plan est incliné, plus la surface de sustentation se déplace. La chaise commence a glisser quand la flèche de la gravité qui s'applique au niveau du centre de gravité bascule en dehors de la surface de sustentation.e en dehors de la surface de sustentation.)
  • Quiz des tailles et Micro-mu  + (On peut constater que les virus sont plus On peut constater que les virus sont plus petit que les grains de lumière. Il est donc impossible d'obtenir des images de virus avec des microscopes classique. Il faut des outils type [https://fr.wikipedia.org/wiki/Microscopie_%C3%A9lectronique_%C3%A0_balayage microscope électronique à balayage]layage microscope électronique à balayage])
  • Chromatographie et capillarité  + (On peut distinguer deux phénomènes différeOn peut distinguer deux phénomènes différents. Le premier est la montée de l'eau qui entraîne les colorants, le second est la séparation des colorants pendant cette montée. Normalement, la gravité terrestre devrait empêcher l'eau de monter le long de la bande et l'eau devrait plutôt avoir tendance à descendre. Cependant il existe le phénomène de capillarité. Ce phénomène physique entre en jeu dès qu'un liquide et une surface se rencontrent. Les molécules du liquide sont plus ou moins fortement attirées selon le liquide et selon la surface en question. Dans un tube en verre, on peut voir que l'eau monte légèrement plus haut sur les bords, la surface du tube attire l'eau par capillarité. Si le tube en verre est assez fin, il fera monter de l'eau jusqu'à ce que la gravité compense cette attraction par capillarité. Ici, le papier filtre attire l'eau par ce même phénomène et la fait monter. En montant, l'eau entraîne le point coloré avec elle. Le deuxième phénomène est celui qui décompose la séparation des couleurs. Pourquoi les colorants se séparent-ils lors de leur montée? C'est tout simplement parce que tous les colorants n'ont pas la même composition, et que par conséquent ils ne réagissent pas de la même manière. Ainsi les colorants monteront à une vitesse et à une hauteur qui dépendront non seulement de leur réaction avec le papier, mais aussi de leur solubilité dans l'eau. Voilà pourquoi ils se séparent. C'est la chromatographie. Il existe de nombreuses techniques de chromatographie, et leurs applications sont multiples en chimie analytique, en médecine, dans l'industrie ou encore la police scientifique. On peut utiliser ce procédé pour connaître la composition d'un produit inconnu, ou pour rechercher la présence et mesurer la quantité d'une substance dissoute dans une autre. La chromatographie permet par exemple de déterminer la quantité de caféine contenue dans un médicament, de savoir quels acides aminés sont présents dans un aliment, de rechercher des traces d'hydrocarbures dans l'eau d'une zone de baignade ou de prouver si la peinture trouvée sur une scène de crime est la même que celle de la voiture d'un suspect.même que celle de la voiture d'un suspect.)
  • Défi : l'eau monte !  + (On peut par exemple installer une "barrièrOn peut par exemple installer une "barrière" pour retenir le sable et bloquer l'eau à l'aide de graviers, de plaques de carton, de barrages de bâtons... Une autre stratégie possible consiste à surélever les constructions en les installant sur un support bâti sur pilotis (les bâtons plantés dans le sable) pour qu'elle ne touchent pas l'eau, ou sur des fondations renforcées et hautes qui résisteront ou freiineront l'infiltration de l'eau (graviers, cartons...). Il est également possible de construire des habitations flottantes en installant les pots sur des radeaux ou des pontons (bouchons de liège attachés par de la ficelle ou autre matériaux flottants). Certaines équipes ont pu décider de retirer les pots de yaourt du sable afin qu'ils ne soient ni renversés ni mouillés par la montée des eaux. Cela permet aussi de gagner le défi ! Il est interéssant dans ce défi de comparer non seulement l'efficacité des solutions choisies, mais aussi le coût et la complexité de leur mise en place : faut-il utiliser beaucoup de matériaux, construire de nombreux équipements, modifier beaucoup le paysage d'origine ?, modifier beaucoup le paysage d'origine ?)
  • L'imperméabilité des sols  + (On remarque que les éponges, même si ellesOn remarque que les éponges, même si elles sont bien essorées, contiennent encore de l’eau ? C’est la même chose pour le sol. Il a une capacité à retenir de l’eau. Pour un sol, la quantité d’eau qu’il peut absorber entre le moment où il est sec et le moment où il sature (il ne peut pas contenir plus d’eau) est appelée « réserve utile ». C’est la quantité d’eau qui peut en être facilement extraite, par les racines des plantes par exemple. Celle-ci est mesurée en millimètres de hauteur d’eau, comme la pluie. Elle varie principalement selon le type de sol (graviers, sable, terre argileuse). Si un sol est privé d'eau pendant une longue période, il peut perdre ses réserves d'eau. C'était le cas de l'éponge toute sèche. Les pores qui retenaient l'eau se rétractent et sa structure se modifie. On observe parfois des fissures qui témoigne de son assèchement. Lorsque c'est le cas, l'eau a du mal à se frayer un chemin, le coefficient de ruissellement augmente alors fortement. Lorsqu’une éponge est gorgée d’eau (dès le début ou après quelques instants d’arrosage) elle n’est plus capable d’en absorber. Son coefficient de ruissellement monte alors jusqu’à 100% (toute l’eau ruisselle) ! C'est la même chose pour le sol, si la pluie est trop intense ou dure trop longtemps, il finira par saturer. Nos éponges ont des coefficients de ruissellement très différents selon leur état. De la même façon, l’inclinaison ou le relief du sol peut influer fortement sur le ruissellement. Il est possible de tester cela facilement chez soi : l’eau s'écoule très rapidement sur les surfaces qui ne sont pas horizontales. Un sol en pente a un coefficient de ruissellement bien supérieur à celui d'un sol horizontal de même surface . Au contraire, si un sol comporte des bosses et des creux, ceux-ci vont ralentir l’écoulement de l’eau et l’aider à s’infiltrer.ulement de l’eau et l’aider à s’infiltrer.)
  • D1-Pong  + (Optimisation : - Utiliser d'autres connecteurs - Sur batterie, sur secteur)
 (Optimisation : utiliser d'autre connecteur Sur batterie, sur secteur)
  • L'oeuf qui flotte  + (Plongé dans l'eau, l’œuf subit deux forcesPlongé dans l'eau, l’œuf subit deux forces, le poids et la poussée d’Archimède. Dans l'eau douce, l’œuf coule, cela signifie qu'il est plus dense que l'eau mais aussi que son poids est supérieur à la poussée d’Archimède.
    '''La poussée d'Archimède est une force qui s'oppose au poids. Elle s'applique sur les objets placés dans un fluide, comme l'eau.'''
    Lorsque l’on rajoute de l’eau saturée en sel, la densité de la solution eau-sel devient plus forte. L'eau devient alors plus dense que l’œuf, et l’œuf se met à flotter.

    Présentation et schéma des trois cas :

    * Premier cas : l’œuf coule dans le liquide qui est l’eau :
    Loeuf qui flotte Archimede coule.jpg



    L’œuf coule dans le liquide, cela signifie que le poids est supérieur à la poussée d’Archimède.

    * Deuxième cas : on rajoute du sel dans l’eau, l’œuf flotte.
    Loeuf qui flotte Archimede flotte.jpg



    L’œuf est au fond du bocal, on rajoute maintenant du sel dans le bocal. Lorsque le sel est rajouté dans l’eau, il se dissout et le mélange eau-sel donne une solution dont la masse volumique varie en fonction de la quantité de sel. La densité de l’œuf est inférieure à la densité de l'eau salée dans le cas présent.

    * Troisième cas : l’œuf reste en sustentation (il reste entre deux eaux) dans la solution :
    L oeuf qui flotte en sustentation.jpg



    La densité de l’œuf est égale à la densité de l'eau salée dans le cas présent.
    ns le cas présent.)
  • Le gorille invisible  + (Plus d'explication ici : https://www.pseudo-sciences.org/Le-test-du-gorille-invisible)
  • Concurrents ou associés dans le sol  + (Plus de 95% des espèces d’un habitat naturPlus de 95% des espèces d’un habitat naturel sont fortement liées les unes des autres, via les réseaux trophiques. Cette proximité des espèces signifie que la disparition d’une espèce peut avoir d'importants impacts sur les autres espèces et donc sur le fonctionnement même de l'écosystème. Par exemple, les prédateurs au sommet des chaînes alimentaires ont un effet de maintien de la biodiversité. S'ils disparaissent, les espèces dont ils se nourrissaient et qu’ils régulaient vont pulluler. Par compétition, elles éliminent alors d’autres espèces avoisinantes, ce qui entraîne une cascade de conséquences... '''Ces interactions montrent également que si nous voulons protéger une espèce dans un milieu donné, il est indispensable de prendre en considération toutes celles qui font partie de son réseau trophique, donc ses proies (et ce qui les nourrit) et ses prédateurs, sans qui l'espèce peut vite devenir envahissante.''''espèce peut vite devenir envahissante.''')
  • Circuit parallèle et en série  + (Plus on branche de composants en série, plPlus on branche de composants en série, plus la tension qui alimente chacun des composants est faible. Les LED ne s'allument pas ou peu. Les LED ont besoin d'une tension minimale à leur borne : si elles reçoivent une tension inférieure, elles ne s'allument pas du tout. Ces observations illustrent les lois de la tension. En série, la loi d’additivité de la tension s’applique, tandis qu’en parallèle, c’est la loi d’unicité de la tension qui s’applique. Cela se traduit ainsi : *dans un branchement en série, la tension du générateur (ici la pile) est égale à la somme des tensions des dipôles (chaque composant), *dans un branchement en dérivation (c’est à dire en parallèle), la tension du générateur est identique à celle des dipôles.érateur est identique à celle des dipôles.)
  • Acidification des océans  + (Plusieurs réactions chimiques se produisenPlusieurs réactions chimiques se produisent. Le CO2 se combine avec l'eau, en formant de l'acide carbonique (H2CO3). L’acide carbonique, instable, se dissocie directement en ions bicarbonate (HCO3-) et H+ (H2CO3 -> HCO3- + H+). La libération d’ions H+ provoque une augmentation de l'acidité, autrement dit le pH diminue. Beaucoup des ions H+ libérés s'associent avec des ions carbonate (CO32-) présents naturellement dans l'eau et forment des ions bicarbonate (H+ + CO32- -> HCO3-). Donc plus le pH diminue plus la concentration en ions carbonate de l'eau de mer diminue également.ement dans l'eau et forment des ions bicarbonate (H<sup>+</sup> + CO<sub>3</sub><sup>2-</sup> -> HCO<sub>3</sub><sup>-</sup>). Donc plus le pH diminue plus la concentration en ions carbonate de l'eau de mer diminue également.)
  • Créer une Interface Web pour ESP32  + (Pour aller plus loin dans la doc : https://ayushsharma82.github.io/ESP-DASH)
  • Flasher le petit bot  + (Pour aller plus loin, voici 2 petits livrets * https://github.com/julienrat/petitbot/blob/master/guide_peda.pdf * https://github.com/julienrat/petitbot/blob/master/manuel_tech_petitbot.pdf)
  • La force de l'eau  + (Pour aller plus loin: https://www.researchgate.net/publication/263847810_Le_role_de_l%27eau_dans_la_cohesion_et_l%27adhesion_du_materiau_terre_Une_question_d%27equilibre <br/>)
  • Projet planétarium  + (Pour ce qui est des plateaux, ces derniers sont mis en rotation grâce à un système d'engrenages planétaires à deux étages. Le premier plateau tourne à 6 tours/min, le deuxième à 3 tours/min et le troisième tourne à 2.5 tours/min.)
  • L'isolation d'une construction  + (Pour définir l'isolation d'un matériau on Pour définir l'isolation d'un matériau on utilise plusieurs grandeurs : - la conductivité thermique ''lambda'' (W/m.°C) caractérise la capacité d'un matériau à transmettre la chaleur par conduction. Plus lambda est petit, plus le matériau est isolant. (les laines isolantes ont typiquement un lambda autour de 0,04 W/m.°C, la mousse PU allant jusqu'à 0,02) - la résistance thermique ''R'' (en m2.°C/W) donne la capacité d'une paroi d'une certaine épaisseur à résister au transfert de chaleur ''R=e/lambda''. Ainsi, plus un mur est épais, plus il est isolant. Ou, pur une épaisseur donnée, plus le matériau utilisé a un lambda petit, plus le mur est isolant. - le coéfficient de transmission calorifique ''U'' (en W/m2.°C) est l'inverse de ''R'' et représente la capacité d'une paroi d'une épaisseur donnée à laisser passer la chaleur. Plus ''U'' est petit, plus la paroi est isolante. Par exemple un mur en ossature bois et bottes de paille peut avoir un U=0,18 W/m2.°C soir un R=0,45 m2.°C/W Un mur en pierre de 60 cm d'épaisseur (cela dépend de la pierre) a un U=3 W/m2.°C soit un R=0,45 m2.°C/W Un double vitrage 4-16-4 à gaz argon a un U autour de 1,3 W/m2.°C=0,45 m<sup>2</sup>.°C/W Un double vitrage 4-16-4 à gaz argon a un U autour de 1,3 W/m<sup>2</sup>.°C)