Les phénomènes de différence de température sont très courant sur Terre, ils sont en partie à l'origine du vent dans le cas de l'air chaud et de l'air froid, et des courants marins dans le cas de l'eau chaude et de l'eau froide.
Dans cette expérience, nous avons voulu illustrer un volcan sous-marin, Les volcans existent sur terre mais aussi sous les océans, Les volcans sous-marins sont plus nombreux que les volcans continentaux mais moins bien connus car plus difficiles à étudier. Certains volcans se situent entre les plaques tectoniques, ils forment ce que l'on appelle les '''dorsales océaniques''', ils sont quasiment toujours en activités et produisent plus de magma que les volcans continentaux. D'autres se trouvent au milieu des plaques, on les appelle les '''volcans intra-plaques''', ils naissent du fait de '''points chauds''', des endroits du manteau où la température est particulièrement élevée. Avec le temps, ces volcans forment des îles. Les îles Galapagos, Hawaï, La Réunion et de Pâques sont des exemple d''''îles de point chaud'''.
Les laves des volcans sous-marins ressemblent à la lave terrestre de type basalthique avec un fort taux de fusion. En condition sous-marine, la lave ne peut pas vraiment couler comme sur la terre car sa surface est rapidement refroidie au contact de l'eau et forme des roches en forme de coussin : des ''pillows lava'' (lave en coussin).
Vous avez peut-être entendu parler des '''fumeurs noirs''' ? En fait, avec l'activité volcanique des fissures se créent et l'eau de mer s'infiltre, rencontre le magma et remonte à la surface, elle devient très acide et emporte avec elle des métaux contenus dans la roche, elle finit par ressortir et réagit avec l'eau de mer qui était restée à l'extérieur. Cette réaction forme un précipité et on voit des fumées noires. Bien que peu attrayantes pour nous, des bactéries vont en fait se nourrir des produits de ces fumées et s'y développer. D'autres organismes adaptés à cet environnement vont venir se nourrir de ces bactéries et une chaîne alimentaire va se créer.
Le magma n'a pas une composition uniforme à l'échelle de la planète. Il ne contient pas forcément les mêmes éléments. Il peut être riche en silice. Dans ce cas là, il a tendance a être très visqueux. Quand il contient peu de silice, il est beaucoup plus fluide.
Quand le magma se fraye un chemin vers la surface de la Terre, la pression qu'il subit diminue. Sous l'effet de cette diminution de pression, les gaz dissous dans le magma se libèrent. Des bulles se forment.
Quand le magma avance vite vers la surface de la Terre et qu'il est visqueux, le gaz n'a pas le temps de s'échapper. La lave qui arrive à la surface de la Terre contient beaucoup de gaz et comme elle est visqueuse, cela forme des morceaux qui sont expulsés violemment. On obtient une éruption explosive dans ce cas là.
Quand le magma est plus liquide ou qu'il avance lentement vers la surface de la Terre, le gaz qui s'en échappe a le temps de s'en aller (il avance en fait plus vite vers la surface de la Terre, ce qui sépare le gaz de la lave). Dans ce cas, l'écoulement de la lave sera beaucoup moins violent, d'où des éruptions effusives.
Il existe une dernière catégorie d'éruption, moins connue et potentiellement très meurtrière : les éruptions limniques. Dans ce cas, le gaz qui s'est échappé du magma s'accumule au lieu d'être libéré progressivement. Or le gaz contenu dans le magma est souvent du dioxyde de carbone (CO2). Lorsque la poche de gaz est libérée brutalement, le gaz (invisible) s'écoule le long de la pente du volcan. Comme le CO2 est un peu plus dense que l'air, le gaz s'écoule vraiment le long de la pente comme le ferait un liquide. Or le CO2 à haute concentration est très toxique pour les êtres vivants. Ainsi en 1986 l’éruption limnique du lac Nyos au Cameroun a tué plus de 1700 personnes.
Depuis une colonne de dégazage permanente a été installée. Le CO2 est libéré progressivement, ne menaçant plus les êtres vivants de la vallée en contrebas. +
L'obturation visuelle provoquée par le passage des parties sombres du zootrope provoque l'effacement de la persistance rétinienne, qui permet la perception les unes après les autres des vignettes dessinées. C'est le modèle précurseur de la pellicule du cinéma. +
Cependant, quelques questions se posent :
*Comment se fait-t-il que lorsqu'on lance un ballon gonflé et un ballon dégonflé en l'air, celui dégonflé retombe en premier tandis que celui gonflé tend à rester en l'air ?
Certains parlent de [https://fr.vikidia.org/wiki/Pouss%C3%A9e_d%27Archim%C3%A8de poussée d'Archimède], vous savez, cette force qui fait remonter un objet à la surface lorsqu'on le plonge dan l'eau. Et bien elle ne s'applique pas ici car la différence de pression est négligeable dans ce cas là.
En fait, il s'agit là d'une expérience différente de celle avec la balance, puisque ici, le ballon est soumis à son propre poids ET aux frottements de l'air sur la surface du ballon.
<br/>
*Qu'est-ce que le frottement de l'air ?
C'est cette force qui s'oppose à votre main et l’envoie en arrière lorsque l'on met sa main à travers la fenêtre de la voiture. Ou encore quand vous faites du vélo, il y a beaucoup de vent sur votre visage mais pas que, il y a aussi le frottement de l'air. Ce frottement est plus important si l'on met sa main à travers la fenêtre plutôt que son doigt. Et le frottement est aussi plus important si l' on va vite. En fait, plus l'objet est gros et plus on va vite, plus il y a de frottements.
Or le ballon gonflé a une certaine taille, à coup sûr plus importante que le ballon dégonflé, c'est-à-dire que le ballon gonflé a une plus grande surface que le ballon dégonflé. C'est pour cela que le ballon gonflé flotte plus longtemps dans l'air, cela est dû aux frottements de l'air.
Ici, avec la balance, il n'y a donc pas de poussée d'Archimède comme dit précédemment et de plus, il n'y pas de frottements car la vitesse est bien trop faible. Le seul facteur ici est donc le poids des ballons, ce poids même qui est plus important, l'air a donc bien une masse.
Pour en lire plus : voici un article wikipédia qui explique les propriétés de l'[http://fr.wikipedia.org/wiki/Air Air] +
On appelle centre de gravité un point théorique sur lequel on peut considérer que la force de gravité s'applique sur les objets (en realité elle s'applique partout sur l'objet, ce point est un point purement théorique utilisé en mécanique newtonienne). La position du centre de gravité d'un objet est dépendante du poids de l'objet, de la répartition du poids dans l'objet et de la forme de l'objet.
La gravité terrestre peut se représenter par une flèche qui s'applique au niveau du centre de gravité des objets et se dirige vers le centre de la Terre. (Idem, c'est un concept purement théorique).
On appelle surface de sustentation la surface théorique dans laquelle doit passer la flèche de la gravité terrestre qui s'applique sur le centre de gravité de l'objet pour que l'objet tienne en équilibre. (Théorique, encore une fois).
Si la flèche qui représente la force de gravité qui s'applique sur ce centre de gravité passe par la surface de sustentation de l'objet, alors l'objet tient en équilibre. Si la flèche passe en dehors de la surface de sustentation, alors l'objet est hors équilibre, il tombe.
Dans l'équilibriste, on accroche du poids au niveau du bouchon avec des pics à brochette. C'est une façon de faire passer le centre de gravité en dessous du cure dent. Il est presque impossible de faire tenir un bouchon en équilibre sur un cure dent seul. Plus les bras sont longs, plus le poids situé au niveau des bras est élevé et plus il devient difficile de trouver une position dans laquelle l'objet ne tiendra pas en équilibre.
Il est possible de faire une expérience complémentaire avec une chaise et une planche de bois. Poser la planche de bois sur le sol et la chaise par dessus. Le centre de gravité se situe quelque part dans le cube formé par les 4 pieds de la chaise et la surface de sustentation est le carré dessiné au sol par les 4 pieds. Quand on soulève un coté de la chaise on déplace la surface de sustentation. Elle ne coincide plus avec le carré dessiné par les 4 pieds de la chaise. Plus le plan est incliné, plus la surface de sustentation se déplace. La chaise commence a glisser quand la flèche de la gravité qui s'applique au niveau du centre de gravité bascule en dehors de la surface de sustentation.
×
Erreur de saisie dans le nom du tutoriel
Vous avez entré un nom de page invalide, avec un ou plusieurs caractères suivants :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #
Connexion
Pas encore enregistré ? Créez un compte pour profiter de toutes les fonctionnalités du service !