Attribut:Deepen

This is a property of type Text.

Affichage de 20 pages utilisant cette propriété.
B
'''La biodiversité''' n'est pas seulement définie par la grande diversité des espèces et des écosystèmes sur Terre : '''elle comprend aussi la grande DIVERSITÉ DES INDIVIDUS au sein de chaque espèce. C'EST LA DIVERSITÉ INTRA-SPÉCIFIQUE, qui existe chez toutes les espèces.''' Et ces niveaux sont en interactions permanentes les uns avec les autres. La '''diversité intra-spécifique correspond''' à la '''diversité génétique''', base du potentiel d’évolution et d’adaptation des espèces. C’est cette diversité des individus d’une même espèce qui conditionne les capacités d’adaptation à court et à long terme des populations et des espèces à leur environnement, changeant dans l’espace et dans le temps (changements climatiques, pollutions, maladies...).  +
La notion de bon état écologique est apparue dans les années 1990 lors du Sommet de la Terre. > En Europe, elle est reprise dans une directive en l’an 2000 qui impose des objectifs de qualité pour les eaux de surface et souterraines. > En France, elle est notamment reprise par les lois Grenelle dans la Trame verte et bleue française.  +
Le "bicarbonate de soude" NaHCO<sub>3</sub> est une poudre blanche couramment utilisée pour combattre les excès d'acidité de l'estomac. Son nom officiel est hydrogénocarbonate de sodium. Sa solution aqueuse contient les ions sodium Na<sup>+</sup> et les ions hydrogénocarbonate HCO<sub>3</sub><sup>-</sup>. Le vinaigre contient, notamment, des molécules d'acide éthanoïque CH<sub>3</sub>COOH. Lorsque le vinaigre et le bicarbonate entre en contact on a : - les molécules acides CH<sub>3</sub>COOH qui perdent un ion H<sup>+</sup> et se transforment en ions éthanoate CH<sub>3</sub>COO<sup>-</sup>, basiques - les ions basiques hydrogénocarbonate HCO<sub>3</sub><sup>-</sup> qui captent un proton H<sup>+</sup> et se transforment en CO<sub>2</sub> + H<sub>2</sub>O (acide conjugué). Les molécules H<sub>2</sub>CO<sub>3</sub> n'ont jamais été mises en évidence. CH<sub>3</sub>COOH = CH<sub>3</sub>COO<sup>-</sup> + H<sup>+</sup> on a le couple CH<sub>3</sub>COOH/CH<sub>3</sub>COO<sup>-</sup> HCO<sub>3</sub><sup>-</sup> + H<sup>+</sup> = CO<sub>2</sub> + H<sub>2</sub>O on a le couple CO<sub>2</sub>, H<sub>2</sub>O/HCO<sub>3</sub><sup>-</sup> En faisant la somme de ces 2 équations on obtient: CH<sub>3</sub>COOH + HCO<sub>3</sub><sup>-</sup> = CH<sub>3</sub>COO<sup>-</sup> + CO<sub>2</sub> + H<sub>2</sub>O L'acide CH<sub>3</sub>COOH donne un ion H<sup>+</sup>. La base HCO<sub>3</sub><sup>-</sup> reçoit un ion H<sup>+</sup>. Les molécules de dioxyde de carbone CO<sub>2</sub>, non polaires, ne sont pas très solubles dans l'eau, qui est un solvant polaire, et se dégagent essentiellement sous forme de gaz.  +
La bouteille est indéformable. Comme elle est ouverte, la pression exercée par l'air sur les parois est la même à l'intérieur et à l'extérieur. En soufflant dans la bouteille, on augmente le volume d'air à l'intérieur, mais comme le volume de la bouteille ne peut pas augmenter (elle est indéformable), il faut que l'air en trop sorte, entraînant la boulette de papier hors de la bouteille. En soufflant avec une paille sur la boulette, l'air est canalisé et orienté en seul point. La vitesse de l'air augmente, car en soufflant dans une paille, le diamètre du faisceau d'air expiré est plus petit. Pour une même quantité d'air soufflé, si le diamètre diminue, la vitesse augmente (le même phénomène se produit au niveau d'un barrage sur une rivière). La force exercée par l'air sur la boulette est plus importante, ce qui permet de la déplacer. En contrepartie, l'air sortant de la bouteille pour éviter la surpression n'est pas canalisé, sa vitesse et sa force sur la boulette ne sont donc pas suffisantes pour la faire ressortir. La force de l'air entrant dans la bouteille étant supérieure à celle de l'air sortant, la boulette entre dans la bouteille.  +
La composition de la terre induit un courant magnétique qui se compose de deux pôles : un négatif et un positif. En frottant l'aiguille à l'aimant, ont oriente le champs magnétique des électrons ferriques qui la composent. En constituant notre boussole, le côté positif, est attiré par le pôle négatif de notre Terre, qui se situe au pôle Nord de notre planète.<br /><br /><br /><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Boussole Champ-magnetique-Terre.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/6/64/Boussole_Champ-magnetique-Terre.jpg"><span ><div class="center"><div class="floatnone"><a href="/images/thumb/6/64/Boussole_Champ-magnetique-Terre.jpg/ia-c79fdbb3a03f57b1bff14375260f5565-px-Boussole_Champ-magnetique-Terre.jpg.png" data-thumbsrc="/images/thumb/6/64/Boussole_Champ-magnetique-Terre.jpg/ia-c79fdbb3a03f57b1bff14375260f5565-px-Boussole_Champ-magnetique-Terre.jpg.png" class="image" title="Champ magnétique terrestre"><img alt="Champ magnétique terrestre" src="/images/thumb/6/64/Boussole_Champ-magnetique-Terre.jpg/ia-c79fdbb3a03f57b1bff14375260f5565-px-Boussole_Champ-magnetique-Terre.jpg.png" width="400" height="266" data-height="266" data-file-width="1400" data-file-height="932" /></a></div></div></span></div>(Le pôle nord magnétique de la Terre est le pôle sud géographique de celle-ci, attention.)<br/>  +
La '''densité''' des liquides est mesurée par rapport à celle de l'eau, dont la valeur est 1. L'huile a une densité d'environ 0.9, elle est donc moins dense que l'eau. L'alcool (éthanol) a une densité encore plus faible qui est égale à environ 0.79. Dans l'expérience, lorsque nous ajoutons l'alcool dans le verre, l'huile reste dans la boîte car elle a une densité plus importante que celle de l'alcool. En effet, c'est le liquide le moins '''dense''' (donc le plus "léger") qui est en contact avec la surface. Par la suite nous ajoutons de l'eau à l'alcool. On peut remarquer que l'eau et l'alcool se mélangent car ils sont parfaitement '''miscibles''', ce qui n'est pas le cas avec l'huile. Au fur et à mesure de l'augmentation de la part d'eau dans le mélange, celui-ci voit sa densité augmenter. Au bout d'un moment, la densité de l'huile et celle du mélange s'équilibrent. L'huile n'est donc plus retenue dans la boîte et "flotte" dans le mélange, sous la forme d'une bulle. L'huile est soumise à deux forces, '''l'attraction terrestre''' et '''la poussée d'Archimède''' exercée par le mélange. Ces deux forces s'équilibrent et font donc "flotter" l'huile. L'huile ne se mélange pas avec l'eau car ses molécules sont composées d'une queue '''hydrophile''' (qui est attirée par l'eau) et d'une tête '''hydrophobe''' (qui rejette l'eau). La partie hydrophobe va donc fuir l'eau. L'huile prend une forme en boule car elle est entourée par le mélange auquel elle ne peut se mélanger, et la forme sphérique est celle qui permet à l'huile d'être le moins possible en contact avec le mélange.  +
C
Comme pour beaucoup de plantes, la croissance de l’arbre dépend de nombreux facteurs environnementaux : sa capacité à grandir, le lieu où il se trouve, la qualité du sol, la pente du terrain, l’exposition à la lumière, sécheresse etc... L’arbre est soumis à d’autres facteurs impactant plus occasionnellement, tels que les animaux, les parasites et bien sûr l’activité humaine (incendie, abattage, élagage) Chaque année, l’arbre possède une nouvelle cerne (cercle) annuelle permettant de découvrir son passé et sa manière dont il a grandi. Si les cernes sont irrégulières, cela peut-être dû à tous ces facteurs. De plus, l’alternance des cercles clairs (bois de printemps) et des cercles foncés (bois d’été), exprime les différentes étapes de la croissance de l’arbre. - Au printemps, la croissance est rapide. Elle se caractérise par une large bande de bois tendre, peu dense, de couleur claire et souvent ponctuée de gros vaisseaux. - La croissance diminue en été. Le bois d’été (ou bois final) se caractérise par une bande de bois plus mince, dure, plus dense donc plus foncée. - A l’automne et en hiver, la croissance de l’arbre s’arrête. Aucun bois ne se crée durant cette période. Ce cycle de croissance annuelle explique le fait que chaque cerne soit constituée de deux parties distinctes. Suivant la proportion de ces « deux bois », la texture finale d’un bois s’en trouve modifiée. Certaines essences sont doncc dites hétérogènes. C’est le cas du chêne et du châtaignier par exemple qui ont une texture très marquée. Ainsi, des bois à texture forte (forte proportion de bois final) ont tendance à être plus durs et plus nerveux que des bois à textures faible, plus tendres et moins nerveux.  +
Si on en met trop peu, le poids de la canette (14,45g) joue. En effet, le poids de l'eau ne sera pas suffisant pour combler la différence de poids entre la partie basse de la canette en alu (à gauche de l'axe de rotation, ici), et la partie haute de la canette, plus grande, donc plus lourde (à droite de l'axe de rotation, ici). Si l'on met trop d'eau (par exemple si l'on remplit la canette aux deux tiers), puisqu'elle est inclinée à 45° et qu'elle est plus haute que large, il y aura plus d'eau dans la partie droite de la canette, que dans la partie gauche. C'est pourquoi dans ce cas, le centre de gravité de la canette se situe plus à droite de l'axe vertical de rotation, et elle ne peut pas tenir en équilibre. Le problème est dû à la forme de la canette. Enfin, si on la fait tourner trop brusquement, la canette se renverse, car une petite vague est créée, cela déplace le centre de gravité et casse l'équilibre dans lequel elle se trouvait.  +
Cette expérience montre qu'une plante se nourrit grâce à des phénomènes couplés, dont '''la transpiration des plantes et''' '''l'effet de capillarité''''' (montée naturelle de certains liquides (dont l'eau) dans des canaux de très petit diamètre).'' *La tige des fleurs et des plantes est constituée de plusieurs canaux minuscules (les vaisseaux capillaires). Chaque petit vaisseau est relié à une partie précise d'un pétale ou d’une feuille. Ainsi, les vaisseaux qui plongent dans l'eau colorée conduisent cette eau par capillarité à toutes les extrémités des plantes (feuilles, fleurs).'' (A noter que la capillarité est directement liée à un autre phénomène physique : la [[Trombone qui flotte|tension superficielle]]).'' *De plus, l’eau est évacuée au niveau des feuilles sous forme de très fines gouttelettes (elle s'évapore) : cela assure la montée de l’eau au sein de la plante.   À ces phénomènes peut s’ajouter, au niveau des racines des plantes, celui de l’osmose '': échange d’eau qui se met en place entre deux milieux séparés par une membrane, l’eau circulant du milieu contenant le moins de sel vers le milieu contenant le plus de sel''. Il permet l'absorption de l’eau et des minéraux dissous du sol par les racines. Découvre le phénomène d’osmose à travers cette [http://users.skynet.be/chr_loockx_sciences/exp_osmose_4.htm expérience].  +
=== '''Allons plus loin dans l'explication''' === Le transport des informations se fait par le biais du bus I2C, bus très utilisé dans les capteurs arduino. Contrairement au bus OneWire, celui-ci a besoin de 2 fils (A4 et A5) afin d'envoyer les data (SDA) et l'horloge (SCL). Afin d'avoir plus de détails sur le calcul des valeurs, un coup d'oeil directement dans la librairie est nécéssaire : tout y est. https://github.com/adafruit/Adafruit-BMP085-Library  +
• Comme dit précédemment, la paille est chargée négativement. Lorsqu'on approche celle-ci du côté d'une plaque, celui-ci va se charger positivement, les charges négatives se repoussant entre elles. Ces dernières vont donc se retrouver de l'autre côté de la plaque (le côté avec l'aluminium). L'influence de la première plaque sur la boule va reproduire le même phénomène sur celle-ci qui elle-même va le reproduire sur la seconde plaque avec tout de même moins de charges. L'attraction étant plus puissante vers la première plaque, grâce à la quantité de charges plus importante, la boule s'y dirige.<br /><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon1.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/e/ed/Carillon_electrostatique_Carillon1.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon1.jpg" class="image"><img alt="Carillon electrostatique Carillon1.jpg" src="/images/e/ed/Carillon_electrostatique_Carillon1.jpg" width="342" height="245" data-file-width="342" data-file-height="245" /></a></div></div></span></div><br /><br /><br />• Lors du contact de la boule chargée positivement et de la plaque chargée négativement, il y a un transfert de charges du fait que les deux forment un seul conducteur : la boule devient chargée négativement. Elle est ensuite attirée de la même manière vers la seconde plaque pour y subir le même phénomène, et sa charge change de signe. Cela se reproduit tant que les charges des plaques sont assez fortes et différentes pour attirer la boule.<br /><br /><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon2.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/8/8f/Carillon_electrostatique_Carillon2.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon2.jpg" class="image"><img alt="Carillon electrostatique Carillon2.jpg" src="/images/8/8f/Carillon_electrostatique_Carillon2.jpg" width="241" height="157" data-file-width="241" data-file-height="157" /></a></div></div></span></div><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon3.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/e/ee/Carillon_electrostatique_Carillon3.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon3.jpg" class="image"><img alt="Carillon electrostatique Carillon3.jpg" src="/images/e/ee/Carillon_electrostatique_Carillon3.jpg" width="248" height="157" data-file-width="248" data-file-height="157" /></a></div></div></span></div><br /><br /><br />• Enfin, lorsque l'on retire la paille, la première plaque répartit ses charges positives sur toute sa surface, ce qui a pour effet d'attirer à nouveau la boule, pour qu'elle puisse faire encore quelques allers-retours jusqu'à atteindre un équilibre.<br /><br/><div class="annotatedImageDiv" typeof="Image" data-resource="Fichier:Carillon electrostatique Carillon4.jpg" data-sourceimage="https://www.wikidebrouillard.org/images/c/c2/Carillon_electrostatique_Carillon4.jpg"><span ><div class="center"><div class="floatnone"><a href="/wiki/Fichier:Carillon_electrostatique_Carillon4.jpg" class="image"><img alt="Carillon electrostatique Carillon4.jpg" src="/images/c/c2/Carillon_electrostatique_Carillon4.jpg" width="180" height="145" data-file-width="180" data-file-height="145" /></a></div></div></span></div><br/>  
De nombreuses activités nécessitent l'accès à l'eau. La découpe d'un territoire en bassins versants permet de lier ces usages et de mettre en évidence leurs relations [1]. Les Schémas d'Aménagement et de Gestion des Eaux (SAGE) ont pour objectif de concilier l'usage de l'eau pour les différentes activités humaines et pour les milieux naturels [2]. Ce sont des outils importants pour l'aménagement d'un territoire et la préservation de ses ressources. Ceux-ci ont pour rôle de réaliser un diagnostic de l'état des eaux sur le territoire, puis de fixer des objectifs et moyens. Pour les piloter, un comité est formé avec de nombreux acteurs et usagers du territoire.  +
Lorsque la catapulte est prête à être lancée, le projectile est placé sur le lanceur. L'élastique est ensuite tendu en tirant sur le bras de levier. Plus l'élastique est tendu, plus la force de lancement sera grande. Lorsque le bras de levier est relâché, l'élastique se détend, transférant l'énergie stockée dans l'élastique au projectile et le propulsant en avant.  +
Ce phénomène fait intervenir la loi des gaz parfaits, PV=nRT, avec : *P : la [https://fr.wikipedia.org/wiki/Pression pression] (Pa), *V : le [https://fr.wikipedia.org/wiki/Volume volume] du gaz (m<sup>3</sup>), *n : la [https://fr.wikipedia.org/wiki/Quantit%C3%A9_de_mati%C3%A8re quantité de matière] (mol), *R : la [https://fr.wikipedia.org/wiki/Constante_universelle_des_gaz_parfaits constante universelle des gaz parfaits] (≈ 8,314 J·K<sup>-1</sup>·mol<sup>-1</sup>), *T : la [https://fr.wikipedia.org/wiki/Temp%C3%A9rature_absolue température absolue] (K). Dans notre cas, la quantité de mol (n) et la constante (R), ne varient pas. Dans un premier temps la température augmente, la production de gaz fait varier son volume mais vu que le verre garde le même volume, la pression augmente un petit peu. Puis lorsque la flamme s’éteint la température diminue et la rétraction de l'air devenu froid, fait diminuer le volume d'air et sous l'effet de la pression, l'eau est aspirée dans le verre et une fois l'eau dans le verre la pression redevient normal.  +
=== '''Allons plus loin dans l'explication''' === L'Arduino est un microprocesseur dont les instructions sont codées dans un langage proche du C. Plus d'info sur l'article Wikipédia [http://wikipedia.org/wiki/langage_C Langage C]. En C, on déclare le type des variables avant de les utiliser : ici les int correspondent à des nombres entiers (1,2,3...), et le void correspond à une fonction non typée. Le const devant un type signifie que l'objet manipulé ne peut pas être modifié  +
=== '''Allons plus loin dans l'explication''' === Au départ, les forces exercées entre les feuilles et à l'extérieur des feuilles s'équilibrent. Lorsque l'on souffle entre les feuilles, on créé une dépression : la force s'exerçant à l'extérieur des feuilles devient plus élevée que celle s'exerçant à l'intérieur. Pour arriver à un nouvel état d'équilibre entre les forces, les feuilles se rapprochent. * [http://fr.wikipedia.org/wiki/D%C3%A9pression_%28physique%29 Dépression] sur Wikipédia.  +
La chlorophylle est un pigment vert qui joue un rôle essentiel dans la photosynthèse. La photosynthèse permet à la plante de transformer les matières organiques montées par capillarité jusqu’aux feuilles qui grâce à la lumière absorbent le gaz carbonique dans l’air et le transforme en oxygène. Le pigment majoritaire chez la feuille verte est donc la chlorophylle. C’est essentiellement à lui que l’on doit la couleur verte des feuilles.  +
On peut distinguer deux phénomènes différents. Le premier est la montée de l'eau qui entraîne les colorants, le second est la séparation des colorants pendant cette montée. Normalement, la gravité terrestre devrait empêcher l'eau de monter le long de la bande et l'eau devrait plutôt avoir tendance à descendre. Cependant il existe le phénomène de capillarité. Ce phénomène physique entre en jeu dès qu'un liquide et une surface se rencontrent. Les molécules du liquide sont plus ou moins fortement attirées selon le liquide et selon la surface en question. Dans un tube en verre, on peut voir que l'eau monte légèrement plus haut sur les bords, la surface du tube attire l'eau par capillarité. Si le tube en verre est assez fin, il fera monter de l'eau jusqu'à ce que la gravité compense cette attraction par capillarité. Ici, le papier filtre attire l'eau par ce même phénomène et la fait monter. En montant, l'eau entraîne le point coloré avec elle. Le deuxième phénomène est celui qui décompose la séparation des couleurs. Pourquoi les colorants se séparent-ils lors de leur montée? C'est tout simplement parce que tous les colorants n'ont pas la même composition, et que par conséquent ils ne réagissent pas de la même manière. Ainsi les colorants monteront à une vitesse et à une hauteur qui dépendront non seulement de leur réaction avec le papier, mais aussi de leur solubilité dans l'eau. Voilà pourquoi ils se séparent. C'est la chromatographie. Il existe de nombreuses techniques de chromatographie, et leurs applications sont multiples en chimie analytique, en médecine, dans l'industrie ou encore la police scientifique. On peut utiliser ce procédé pour connaître la composition d'un produit inconnu, ou pour rechercher la présence et mesurer la quantité d'une substance dissoute dans une autre. La chromatographie permet par exemple de déterminer la quantité de caféine contenue dans un médicament, de savoir quels acides aminés sont présents dans un aliment, de rechercher des traces d'hydrocarbures dans l'eau d'une zone de baignade ou de prouver si la peinture trouvée sur une scène de crime est la même que celle de la voiture d'un suspect.  
Plus on branche de composants en série, plus la tension qui alimente chacun des composants est faible. Les LED ne s'allument pas ou peu. Les LED ont besoin d'une tension minimale à leur borne : si elles reçoivent une tension inférieure, elles ne s'allument pas du tout. Ces observations illustrent les lois de la tension. En série, la loi d’additivité de la tension s’applique, tandis qu’en parallèle, c’est la loi d’unicité de la tension qui s’applique. Cela se traduit ainsi : *dans un branchement en série, la tension du générateur (ici la pile) est égale à la somme des tensions des dipôles (chaque composant), *dans un branchement en dérivation (c’est à dire en parallèle), la tension du générateur est identique à celle des dipôles.  +
ça marche avec n'importe quelle boisson gazeuze, y compris l'eau pétillante. la substance ajoutée (le mentos) doit juste avoir une surface pleine de micro-aspérités. Du sucre ou du sel en poudre donnent aussi le même résultat (l'intensité dépendant de la quantité ajoutée, elle peut varier d'une expérience à l'autre). D'autres bonbons sucrés donnent un résultat souvent moins spectaculaire (  +