Recherche par propriété

Cette page fournit une simple interface de navigation pour trouver des entités décrites par une propriété et une valeur nommée. D’autres interfaces de recherche disponibles comprennent la page recherche de propriété, et le constructeur de requêtes ask.

Recherche par propriété

Une liste de toutes les pages qui ont la propriété « Deepen » avec la valeur « Le son n’est pas quelque chose d’immatériel, c’est une onde (ou vibration), c’est-à-dire un déplacement de matière. Selon la densité de la matière déplacée, la vibration aura plus ou moins de force. L'air est formé de minuscules molécules qui sont éloignées les unes des autres. Dans l'eau, les molécules, différentes de celle de l'air, sont plus rapprochées. Les vibrations du son se transmettent donc beaucoup mieux d'une molécule à une autre. Ainsi l'eau est plus dense que l'air et le son y circule mieux. Pour visualiser une onde, il est possible de lancer un caillou sur un plan d’eau. On observe ensuite des vagues à la surface. Le son se déplace exactement de la même manière mais à des vitesses bien plus élevées. Vitesse du son dans l'air : 340 mètres par seconde – 1224 km/h Vitesse du son dans l'eau : 1500 mètres par seconde – 5 400 km/h - dans l’eau) Plus d'explication sur le son : https://fr.wikipedia.org/wiki/Son_(physique) ». Puisqu’il n’y a que quelques résultats, les valeurs proches sont également affichées.

Affichage de 11 résultats à partir du n°1.

Voir (20 précédentes | 20 suivantes) (20 | 50 | 100 | 250 | 500).


    

Liste de résultats

  • Imagine... ta campagne  + (Pour développer son territoire et l'adaptePour développer son territoire et l'adapter à l'évolution des besoins et des priorités, en particulier face à l'augmentation des évènements liés au changement climatique global (pollution, pluies plus intenses et inondations, pics de chaleur...), il est essentiel de travailler collectivement, en recueillant l'avis et les propositions des experts comme des citoyens et en définissant des priorités : l'environnement, la santé, l'emploi... La gestion durable d'une ville consiste mettre en place des mesures qui permettent de répondre aux besoins et aux attentes des habitants, mais aussi d'assurer des revenus économiques (tourisme, emploi...) sans dégrader l'environnement ou le cadre de vie, ni épuiser les ressources naturelles (eau, terres cultivables...). Tous les experts et les citoyens ne sont pas toujours du même avis et n'ont pas les mêmes priorités, et une commune n'a pas toujours le budget ou les équipements, ou l'espace disponible pour mettre en place les solutions les plus efficaces. Il est donc souvent compliqué voire impossible de satisfaire tout le monde, et il faut parfois faire des compromis !, et il faut parfois faire des compromis !)
  • Défi : lutter contre la sécheresse  + (Pour mesurer la sécheresse les scientifiquPour mesurer la sécheresse les scientifiques utilisent plusieurs indicateurs. Le SPI (de l'anglais Standardized Precipitation Index) est un indice permettant de mesurer la sécheresse météorologique. Il s’agit d’un indice de probabilité qui repose seulement sur les précipitations. Les probabilités sont standardisées de sorte qu’un SPI de 0 indique une quantité de précipitation médiane (par rapport à une climatologie moyenne de référence, calculée sur 30 ans). L’indice est négatif pour les sécheresses, et positif pour les conditions humides Le SWI (de l’anglais Soil Wetness Index ) est un indice d’humidité des sols. Il représente, sur une profondeur d’environ deux mètres, l’état de la réserve en eau du sol par rapport à la réserve utile (eau disponible pour l’alimentation des plantes). Lorsque l'indice d'humidité des sols (SWI) est voisin de 1, le sol est humide (supérieur à 1, le SWI indique que le sol tend vers la saturation). Inversement, lorsqu'il tend vers 0, le sol est en état de stress hydrique (inférieur à 0, il indique que le sol est très sec). à 0, il indique que le sol est très sec).)
  • Hologramme  + (Pour s'initier un peu plus au monde passionnant de l'optique et de la réfraction, n'hésitez pas à suivre le lien suivant : https://www.superprof.fr/ressources/scolaire/physique-chimie/seconde/optique/loi-de-la-refraction.html)
  • Des cratères d'énergie  + (S’il y a de la matière, il y a de l’énergiS’il y a de la matière, il y a de l’énergie. Le monde étant rempli de matière, il est également rempli d’énergie. Et cette énergie ne se crée pas et elle ne disparaît pas. Elle se transforme pour passer d’un système à un autre, d’un état à un autre. Ici, la bille est faite de matière donc elle contient en son sein de l’énergie. Plus sa masse sera élevée, plus elle aura d’énergie stockée. De plus, en tenant la bille à une certaine hauteur, elle a accumulé de l’énergie qu’on appelle énergie potentielle gravitationnelle. Cette énergie dépend de la position de l’objet. Plus on lâchera haut la bille, plus elle aura stocké d’énergie. Quand on lâche la bille, toute cette énergie cumulée va se transformer en vitesse, en énergie cinétique (= énergie de mouvement). Puis lorsque la bille touche la surface de la farine, sa vitesse est arrêtée mais l’énergie n’a pas disparue. Elle s’est transmise aux grains de farine qui se sont déplacés ; aux molécules d’air qui ont formé un son. L’énergie a bien été conservée ; elle a seulement changé de forme.servée ; elle a seulement changé de forme.)
  • Coefficient de ruissellement  + (Tu as remarqué que nos éponges, même si onTu as remarqué que nos éponges, même si on les essore bien, contiennent encore de l’eau ? C’est la même chose pour le sol ! Il a une capacité à retenir de l’eau. Pour un sol, la quantité d’eau qu’il peut absorber entre le moment où il est sec et le moment où il sature (il ne peut pas contenir plus d’eau) est appelée “réserve utile”. C’est la quantité d’eau qui peut en être facilement extraite, par les racines des plantes par exemple. Celle-ci est mesurée en millimètres de hauteur d’eau, comme la pluie. Elle varie principalement selon le type de sol (graviers, sable, terre argileuse). Lorsqu’une éponge est gorgée d’eau (dès le début ou après quelques instants d’arrosage) elle n’est plus capable d’en absorber. Son coefficient de ruissellement monte alors jusqu’à 100% (toute l’eau ruisselle) ! C'est la même chose pour le sol, si la pluie est trop intense ou dure trop longtemps, il finira par saturer. Nos éponges ont des coefficients de ruissellement très différents selon leur état. De la même façon, l’inclinaison ou le relief du sol peut influer fortement sur le ruissellement. Tu peux tester cela facilement chez toi : l’eau s'écoule très rapidement sur les surfaces qui ne sont pas horizontales. Un sol en pente a un coefficient de ruissellement bien supérieur à celui d'un sol horizontal de même surface . Au contraire, si un sol comporte des bosses et des creux, ceux-ci vont ralentir l’écoulement de l’eau et l’aider à s’infiltrer.ulement de l’eau et l’aider à s’infiltrer.)
  • Concentration de la lumière  + (Une '''loupe''' est un instrument d'optiquUne '''loupe''' est un instrument d'optique subjectif constitué d'une lentille convexe permettant d'obtenir d'un objet une image agrandie. La loupe est la forme la plus simple du microscope optique, qui lui, est constitué de plusieurs lentilles l'objectif et l'oculaire), d'un système d'éclairage élaboré complété d'un condenseur de lumière rendant le fond uni sans image parasite, et qui répond à la définition de ''système dioptrique centré''. [http://fr.wikipedia.org/wiki/Loupe Loupe sur Wikipédia]ipedia.org/wiki/Loupe Loupe sur Wikipédia])
  • Fouille archéologique (comme un vrai paléontologue ! )  + (Une fois tout les squelettes montés, place à la préparation de l'exposition (musée). Préparer sur une table, des supports pour accueillir les squelettes et les pancartes explicatives. Décorés avec des fossiles ou des dessins ou des photos...)
  • Visualiser les sons avec un laser  + (Vous serez peut-être surpris de voir que dVous serez peut-être surpris de voir que diffuser une fréquence, par exemple 300 Hz donne un cercle ou une forme de 8 et qu'une autre fréquence seule (par exemple 200Hz) fait elle aussi un cercle légèrement différent, mais lorsque qu'on les diffuse ensemble on obtient une rosace en rotation très complexe. Il faut comprendre que le cercle que l'on voit c'est en fait un point (du pointeur laser) qui se déplace en décrivant un cercle tellement rapidement qu'on ne le voit même pas bouger. à 200Hz le point fera le tour du cercle 200 fois par seconde, alors qu'à 300Hz il le fera 300 fois par seconde, donc même si les formes paraissent similaire, le point se déplace en faite à des vitesses très différentes selon les fréquences mais de toute façon imperceptible par l’œil humain.oute façon imperceptible par l’œil humain.)
  • Les P'tit poissons  + (Vous trouverez plus d'explications sur la page du ludion ici [[Mission ludion, l'amener au fond de la bouteille]] Car c'est un remix pour les enfants de 3 à 6 ans.)
  • Cristaux de sel  + (L'abbé René-Just Haüy avait remarqué la coL'abbé René-Just Haüy avait remarqué la constance des formes des individus d'une espèce végétale. Alors que les cristaux, dont la composition ne change jamais, présentaient des formes indéfiniment variables. Il observa qu'en cassant des cristaux de calcite de différentes formes, les fragments obtenus avaient toujours la même forme géométrique. L'abbé Haüy imagina que chacune des formes observées était composée d'une multitude de solides infiniment petits, ayant chacun les mêmes propriétés géométriques, physiques et chimiques que la forme elle-même. Un cristal apparaît donc constitué par un agencement de briques élémentaires, tout comme une maison peut être constituée par un agencement de briques. De la même manière, par agencement de briques, toutes identiques, on peut construire une cathédrale ou une maison. Encore plus... Les travaux de Haüy montrent que plusieurs formes de briques élémentaires sont nécessaires pour décrire l'ensemble des cristaux. Certaines formes sont simples, comme le cube, alors que d'autres semblent plus compliquées, comme le rhomboèdre. Haüy reconnut 6 genres de briques élémentaires, mais aujourd'hui on en admet 7. On parle des 7 systèmes cristallins : cubique, quadratique, orthorhombique, monoclinique, triclinique, rhomboédrique, hexagonal.ue, triclinique, rhomboédrique, hexagonal.)
  • Propagation du son dans l'eau et l'air  + (Le son n’est pas quelque chose d’immatérieLe son n’est pas quelque chose d’immatériel, c’est une onde (ou vibration), c’est-à-dire un déplacement de matière. Selon la densité de la matière déplacée, la vibration aura plus ou moins de force. L'air est formé de minuscules molécules qui sont éloignées les unes des autres. Dans l'eau, les molécules, différentes de celle de l'air, sont plus rapprochées. Les vibrations du son se transmettent donc beaucoup mieux d'une molécule à une autre. Ainsi l'eau est plus dense que l'air et le son y circule mieux. Pour visualiser une onde, il est possible de lancer un caillou sur un plan d’eau. On observe ensuite des vagues à la surface. Le son se déplace exactement de la même manière mais à des vitesses bien plus élevées. Vitesse du son dans l'air : 340 mètres par seconde – 1224 km/h Vitesse du son dans l'eau : 1500 mètres par seconde – 5 400 km/h - dans l’eau) Plus d'explication sur le son : https://fr.wikipedia.org/wiki/Son_(physique)tps://fr.wikipedia.org/wiki/Son_(physique))
  • MAÏZENA : FLUIDE OU SOLIDE ?  + ( * La Maïzena est un [http://fr.wikipedia. * La Maïzena est un [http://fr.wikipedia.org/wiki/Fluide fluide non-newtonien] (lien Wikipédia) * [http://fr.wikipedia.org/wiki/Rh%C3%A9ologie la Rhéologie] sur Wikipédia * Voir également [http://fr.wikipedia.org/wiki/M%C3%A9canique_des_fluides la Mécanique des fluide]s sur Wikipédia des la Mécanique des fluide]s sur Wikipédia )
  • Au dela des étoiles  + ( * Le [http://fr.wikipedia.org/wiki/Scintillation_%28%C3%A9toile%29 scintillation d'une étoile] sur Wikipédia. * [http://fr.wikipedia.org/wiki/Convection La convection] sur Wikipédia. )
  • Test du boudin de terre  + (==== Sol argileux, lourd : ==== * Aspect :==== Sol argileux, lourd : ==== * Aspect : compact, collant lorsqu’il est humide, très dur et fendillé lorsqu’il est sec. * Avantages : retenant bien l’humidité et les minéraux. Ce type de sol peut être  productif s’il est correctement enrichi en éléments nutritifs. * Inconvénients : il est difficile à travailler et s’engorge vite lors de fortes pluies. Compact, il empêche une bonne circulation de l’eau et de l’air,  un enracinement profond. Ce type de sol se réchauffe lentement au printemps, occasionnant un retard de la végétation. ==== Sol limoneux, riche : ==== * Aspect : doux au toucher, poudreux lorsqu’il sèche. * Avantages : très fertile, il est facile à travailler, propice au bon développement des plantes. * Inconvénients : fragile, il a tendance à former une croûte sous l’effet de la pluie et des arrosages. ==== Sol humifère, riche en humus : ==== * Aspect : sol spongieux, léger, il est de couleur sombre. * Avantages : ce type de sol est fertile. il retient bien l’eau (fonctionne comme une éponge), ne colle pas, est facile à travailler, se réchauffe rapidement. * Inconvénients : le risque d’acidité de ce type de sol peut limiter ou empêcher la plantation de certains végétaux. ==== Sol sableux, léger : ==== * Aspect : granuleux au toucher, terre sans cohésion. * Avantages : très perméable à l’eau et à l’air, ce type de sol est facile à travailler. Il se draine naturellement grâce à sa texture poreuse. Il ne s’engorge jamais et se réchauffe facilement. * Inconvénients : très filtrant, il retient peu l’eau et peu les éléments nutritifs. Dépourvu de matière organique, il est facilement lessivé lors de l’arrosage ou des pluies. Il doit donc être fréquemment amendé pour rester fertile. ==== Sol calcaire : ==== * Aspect : sol blanchâtre d’aspect crayeux, terre souvent légère. * Avantages : perméable à l’eau, il se réchauffe rapidement * Inconvénients : Le calcaire peut bloquer certains éléments fertilisants qui deviennent alors non disponibles pour les plantes. Ce type de sol doit être fréquemment amendé. Sec en été, il est facilement boueux en cas de pluie. il est facilement boueux en cas de pluie.)
  • Tache aveugle  + (Constituant de l’œil, la rétine est constiConstituant de l’œil, la rétine est constituée de plusieurs couches de cellules et de fibres superposées. Elle comporte des cellules réceptrices : les cônes et les bâtonnets. Les cônes, au nombre de 3 à 4 millions par œil, servent à la discrimination des couleurs en vision diurne. Quant aux bâtonnets, pouvant atteindre les 100 millions par œil, ceux-ci ne réagissent qu'aux intensités lumineuses très faibles, principalement en vision nocturne. La partie la moins réceptrice de la rétine est la tache aveugle, appelée aussi point aveugle ou tache de Mariotte. A l’endroit où se rencontrent le nerf optique et la rétine, toutes les branches terminales des fibres nerveuses de la vue se rassemblent ; il n’y a pas de cellules visuelles sur un point d’environ 1,2 mm de rayon. De par le mouvement incessant de nos yeux, le cerveau reconstitue aisément l’ensemble d’une image et supplée ce qui n’est pas visible pour l’œil au moyen de mécanismes cérébraux automatiques.oyen de mécanismes cérébraux automatiques.)
  • Aéroglisseur  + (En fait, l’aéroglisseur n’a aucun contact En fait, l’aéroglisseur n’a aucun contact avec la surface sur laquelle il repose. Il est en permanence sur coussin d’air. La présence d'un coussin d'air réduit considérablement le frottement et permet à l'aéroglisseur d'évoluer. Le principe est simple. L'air qui s'échappe du ballon s’évacue sous le disque. Les forces très importantes s’exerçant sur le support sont telles que le disque est soulevé de 1 ou 2 millimètre(s) par rapport à la table : il est en sustentation. Cet écart de quelques millimètres lui permet ainsi de "survoler" la surface sur laquelle il se trouve...r" la surface sur laquelle il se trouve...)
  • La sécurité de l'utilisation des outils  + (Il est important d'avoir un cadre strict pour éviter tout problème. Plus on aménage l'espace et moins il est posible qu'on vol les outils et moins il y a de danger.)
  • Rétractation de l'air  + (L'air chaud prend plus de place que l'air froid. Quand on chauffe de l'air, il prend plus de place : c'est la dilatation. Quand l'air refroidit, il prend moins de place : c'est la rétractation.)
  • Déplacements de l'air  + (L'air est composé de gaz (azote, oxygène, L'air est composé de gaz (azote, oxygène, des traces d'autres gaz). Un gaz est constitué de molécules. La masse d'une molécule est constante mais avec la chaleur son volume augmente. Donc le rapport entre la masse et le volume (densité) diminue. Exemple numerique: Une mole d'azote pèse 28 g. Une mole d'azote à 0°C occupe 22,4 litre. Sa masse volumique est 28 / 22,4 = 1,25 kg / m3 ou 1,25 g/L Loi de Mariotte : PV/T = Cste P = Pression atmosphérique (Pa ou bar) V = volume (kg/m3 ou g/L) T = Température (K) La même mole à 50°C (293 K) occupe 22,4 * (273 + 50 ) / 273 = 26, 5 L Sa masse volumique à 50° est 28 / 26,5 = 1,056 kg / m3 ou 1,056 g/L La densité (masse volumique) de la molécule d'azote passe de '''1,25 g/L''' à 0° à '''1,056 g/L''' à 50°1,25 g/L''' à 0° à '''1,056 g/L''' à 50°)
  • Zootrope  + (L'obturation visuelle provoquée par le pasL'obturation visuelle provoquée par le passage des parties sombres du zootrope provoque l'effacement de la persistance rétinienne, qui permet la perception les unes après les autres des vignettes dessinées. C'est le modèle précurseur de la pellicule du cinéma.dèle précurseur de la pellicule du cinéma.)
  • Couleurs d'un feutre noir  + (L'étalement de l'encre et la dispersion deL'étalement de l'encre et la dispersion des différentes couleurs est une illustration simple du principe de chromatographie. Cette technique est utilisée en laboratoire pour séparer les différents composants d'un mélange. Lors d'une chromatographie, l'échantillon est entraîné par une phase mobile, appelée éluant (ici, l'eau) à travers une phase fixe (ici, le papier filtre). La phase fixe retient plus ou moins fortement les différents composants de l'échantillon qui vont alors migrer à des vitesses différentes. On peut ainsi les séparer. Souvent l'échantillon est comparé à une solution dont les substances sont déjà connues, ce qui permet d'identifier les composants de l'échantillon à analyser.es composants de l'échantillon à analyser.)