C’est le bocal en verre qui reproduit l’effet de serre que l’on a sur la Terre. La température sous le bocal est plus élevée que pour les deux autres glaçons. Cela se vérifie avec l'expérience du thermomètre sous un saladier en verre, en parallèle de l’expérience des glaçons. Le glaçon qui fondra le moins sera celui situé sous le coton car celui-ci apporte un effet isolant au glaçon.
La température peut être moins élevée sous le saladier au début de l'expérience car le saladier peut avoir un effet isolant au départ (s'il est plus froid que la température de la pièce notamment) +
En faisant tourner le disque nos yeux n’ont plus le temps de distinguer les deux dessins : ils se confondent, formant un dessin unique. C’est ce qu’on appelle la '''persistance rétinienne'''. Les scientifiques pensent que l’œil conserverait l'image quelques instants et elle se superposerait donc à la suivante. +
Un capteur de température délivre une tension proportionnelle à celle-ci. La carte Arduino se charge de lire cette valeur afin de la convertir et de la retranscrire sous forme lumineuse grâce aux leds +
Quand on écrit une commande sur le logiciel installé sur l'ordinateur, on utilise un langage spécifique, propre au logiciel (ici le langage "VPL").
Le logiciel converti ce code en un message qui pourra être compris par le robot. On dit que le logiciel joue le rôle "d'interface" entre l'humain et la machine. +
Par contact, la membrane fait vibrer l'air qui l'entoure, y compris à l’intérieur du cylindre. Le cylindre sert donc de caisse de résonance. Plus la membrane est tendue, plus elle revient rapidement dans sa position initiale : comme l'air vibre plus vite, le son produit est plus aigu. +
Pour plus de détail sur la structure d’un code arduino, je vous invite à aller voir une page dédiée, par exemple ici : [[Premiers pas avec Arduino|https://www.wikidebrouillard.org/wiki/Premiers_pas_avec_Arduino]], mais sachez que la partie du code ou il y a écrit « digitalWrite(pinLed, HIGH); » donne l’ordre à la carte d’envoyer du courant par le pin, la partie « digitalWrite(pinLed, LOW); » donne l’ordre à la carte d’arrêter d’envoyer du courant sur ce pin, et la partie « delay(1000); » donne l’ordre à la carte d’arrêter d’exécuter le code pendant la durée indiquée en millisecondes, ici 1000 ms, soit 1 seconde. Avec ce code, la LED devrait donc s’allumer et s’éteindre toute les secondes. +
La Tour d'Hanoï permet de comprendre la notion d'algorithme : on refait plusieurs fois la même séquence d'actions qui visent reformer une pile de disques de plus en plus grands sur une autre tige.
Pour déplacer une tour de n disques, il faut au minimum (2^n)-1 déplacements (lire : "2 puissance n, moins 1") +
=== '''De manière simple''' ===
* '''Le bouchon est fermé'''
D'abord on enlève la punaise du haut, rien ne se passe, il n'y a pas de fuite ou presque. Le trou de la punaise est trop petit pour laisser passer l'eau et l'air, la pression d'un côté et de l'autre est à l'équilibre.
Ensuite on enlève la deuxième punaise du milieu. On s'aperçoit que celle du milieu fuit plus que celle du haut : en effet la pression de l'eau au niveau du trou du milieu est plus élevée que celui du haut.
Enfin on retire la dernière punaise qui est tout en bas. Beaucoup d'eau s'échappe du trou du bas, assez peu du trou du milieu, par contre il y a de l'air qui rentre dans la bouteille par le trou du haut. La pression en bas est plus forte que la pression atmosphérique et pousse l'eau à sortir. Et inversement, en haut, la pression de l'eau est plus faible que celle de l'air car la fuite du haut entraîne un « manque » qu'il faut combler par de l'air.
* '''On ouvre le bouchon'''
On n'a donc plus besoin de faire rentrer de l'air par les trous et 3 jets d'eau s'échappent de la bouteille. Celui du haut sort avec peu de vitesse et chute assez vite, celui du milieu est moyen tandis que celui du bas est le plus vif et retombe le plus loin de la bouteille.
On voit que la pression de l'eau influe sur l'énergie présente dans le jet et on en déduit que plus il y a d'eau au-dessus du trou, plus il y a de pression. +
Nous avons utilisé des produits du quotidien avec des aspects et des utilisations différentes. En effet, ces différents produits ont une densité différente.
'''Mais qu’est ce que la densité''' ? La densité est le poids d’un produit dans un certain volume (l’eau ou l’air).
Certains liquides sont plus « lourds » (denses) que d’autres. Lorsque tu tentes de mélanger 2 liquides qui n’ont pas la même densité, ils se séparent lorsque tu cesses de brasser. Le plus « lourd » se dépose au fond et le plus « léger » reste au-dessus.
On dit toujours que l'huile est plus légère que l'eau et que c'est pour cela qu'il ne se mélange pas. En effet lorsque l'on met de l'eau et de l'huile dans un verre on observe 2 couches bien distinctes. L'huile a une densité donc un poids moins grand que l'eau ce qui fait que l'huile est au dessus de l'eau.
<br/>
<table class=""wikitable"Tableau">
<tr>
<th>Produits
</th><th>Densité (g/cm<sup>3</sup>)
</th><th>
</th><th>
</th></tr><tr>
<td>Miel
</td><td>1,42
</td><td>
</td><td>
</td></tr><tr>
<td>Huile
</td><td>0,900 ( peut varier selon le type d'huile)
</td><td>
</td><td>
</td></tr><tr>
<td>Liquide vaisselle
</td><td>1,03
</td><td>
</td><td>
</td></tr><tr>
<td>Sirop
</td><td>Entre 1,007 et 1,383
</td><td>
</td><td>
</td></tr><tr>
<td>Eau
</td><td>1
</td><td>
</td><td>
</td></tr><tr>
<td>Lessive liquide
</td><td>1,015 et 1,05
</td><td>
</td><td>
</td></tr></table> +
Il s’agit d’une réaction chimique. Le bicarbonate de sodium joue la base et l’acide citrique l’acide. Sans contact avec l’eau, il n’y a pas libération de CO2. Une fois en contacte avec l’eau, le CO2 est libéré tel que :
'''3 Na(HCO3) + C6H8O7 → ''3 CO2'' + Na3(C6H5O7) + 3 H2O'''
soit : '''Bicarbonate De Sodium + Acide Citrique = ''Dioxyde De Carbone'' + Citrate De Trisodium + Eau'''
Ainsi libéré, le CO2 peut s’échapper et ainsi créer des bulles dans le mélange. +
L'eau emporte beaucoup de choses sur son passage ! En se déplaçant, l'eau vient bousculer les dépôts dans le lit de la rivière et les entraine avec elle. Ceux-ci peuvent se retrouver emportés et déposés plus loin.
Les plus petits sédiments, comme le sable ou l'argile, sont facilement emportés par le courant. Même la plupart des galets qu'on retrouve au fond d'une rivière viennent de bien plus haut.
Lorsque la pluie s'intensifie, la rivière grandit et peut même sortir de son lit. On dit alors qu'elle est en crue.
Comme on l'a vu, plus elle va vite, plus elle a de force et plus elle va emmener de sédiments avec elle.
Lorsque la rivière est en crue elle devient capable d'emmener des éléments beaucoup plus lourds, comme des rochers ou des arbres entiers ! +
Le trombone reste à la surface de l'eau grâce à la [http://www.wikidebrouillard.org/index.php?title=Tension_superficielle tension superficielle] qui peut être rompue en ajoutant du produit vaisselle. +
Vous contrôlez un dinosaure qui doit aller le plus loin possible tout en évitant les obstacles. Vous pressez la barre espace pour éviter ces obstacles. +
Lorsque vous avez accrocher votre poids au trébuchet (pierre par exemple), votre bâton va être verticale.
Vous pouvez ensuite placer le projectile dans la poche et lorsque vous souhaitez le lancer il vous suffit de ramener votre poids au sol ( manuellement) puis de relâcher, cela aura pour effet de lancer le projectile. +
Le son est une '''vibration'''.
Lorsque tu parles dans le pot de yaourt, le son de ta voix fait vibrer ce dernier.
Cette vibration (donc ta voix) est transmise à l'autre pot de yaourt grâce à la ficelle.
Ton interlocteur, en plaçant son oreille dans le pot "reçoit" ces vibrations.
Son système auditif les convertit alors sous forme de signaux que le cerveau interprètera ensuite comme un son.
Ainsi la personne au bout du téléphone entendra ce que tu dis !
Mais alors pourquoi on entend mieux avec ce téléphone ?
La vibration sonore s'estompe après avoir parcouru une certaine distance. Elle s'atténue au fur à mesure jusqu'à disparaître. Le téléphone (et en particulier la ficelle) permet d'augmenter cette distance. On peut donc s'entendre et se parler de plus loin. +
On sait à que l’exposition aux rayonnements Ultraviolets (UV) est le principal facteur des cancers de la peau.
Nous avons réalisé que la nocivité de ce phénomène est voué à s’intensifier dans un futur très proche. Il nous a semblé pertinent de concevoir un Objet connecté afin de lier information et prévention. Dans le cadre du défi, nous avons dû trouver une identité visuelle en rapport avec notre thème pour designer l'objet, cependant il a été très difficile de s'accorder sur une forme qui ait réellement du sens, sans pour autant rester sur du littéral. +
Le tableau de synthèse propose des exemples de placement des vignettes "mesures" sur les différents habitats. Il s'agit d'une possibilité, elle est loin d'être la seule combinaison possible. Plusieurs mesures sont possibles pour différents types d'habitats, et toutes les mesures applicables ne sont pas forcément présentées sous forme de vignettes. Ne pas hésiter à ajouter des propositions en créant des vignettes supplémentaires sur papier, ce qui enrichira les discussions et valorisera les réflexions des groupes ! +
Le pot rempli d'eau symbolise l'atmosphère terrestre. On ajoute du lait pour symboliser les poussières et les gaz présents dans l'atmosphère.
Si n'y avait pas d'atmosphère , le ciel aurait la couleur du soleil, donc blanc : si on regarde la lampe directement, on voit que la lumière est blanche. Lorsqu'on regarde à travers le bocal d'eau + lait, on voit la lumière bleue.
C'est comme si l'atmosphère qui entoure la Terre "filtrait" la lumière du soleil et ne nous renvoyait que certaines couleurs. Comme on peut le voir dans l'expérience, la lumière bleue est déviée dans tous les sens lorsqu'elle arrive sur les particules de lait. Dans l'atmosphère la lumière du soleil est déviée par les molécules de gaz. La composition de notre atmosphère et son épaisseur fait que ce sont les longueurs d'ondes correspondant au bleu qui sont déviées. +
×
Erreur de saisie dans le nom du tutoriel
Vous avez entré un nom de page invalide, avec un ou plusieurs caractères suivants :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #
Connexion
Pas encore enregistré ? Créez un compte pour profiter de toutes les fonctionnalités du service !