Recherche par propriété

Cette page fournit une simple interface de navigation pour trouver des entités décrites par une propriété et une valeur nommée. D’autres interfaces de recherche disponibles comprennent la page recherche de propriété, et le constructeur de requêtes ask.

Recherche par propriété

Une liste de toutes les pages qui ont la propriété « Deepen » avec la valeur « Dans notre cas, nous avons utilisé pour l'impression une Ultimaker 2+ avec du PLA rouge mais n'importe quelle imprimante 3D plastique fera l'affaire. Nous ne savons pas ce que cette catapulte peut donner si elle est imprimée avec une imprimante résine. ». Puisqu’il n’y a que quelques résultats, les valeurs proches sont également affichées.

Affichage de 85 résultats à partir du n°1.

Voir (200 précédentes | 200 suivantes) (20 | 50 | 100 | 250 | 500).


    

Liste de résultats

    • Fabriquer une catapulte  + (Dans notre cas, nous avons utilisé pour l'impression une Ultimaker 2+ avec du PLA rouge mais n'importe quelle imprimante 3D plastique fera l'affaire. Nous ne savons pas ce que cette catapulte peut donner si elle est imprimée avec une imprimante résine.)
    • Biodiversité - Diversité des individus  + ('''La biodiversité''' n'est pas seulement '''La biodiversité''' n'est pas seulement définie par la grande diversité des espèces et des écosystèmes sur Terre : '''elle comprend aussi la grande DIVERSITÉ DES INDIVIDUS au sein de chaque espèce. C'EST LA DIVERSITÉ INTRA-SPÉCIFIQUE, qui existe chez toutes les espèces.''' Et ces niveaux sont en interactions permanentes les uns avec les autres. La '''diversité intra-spécifique correspond''' à la '''diversité génétique''', base du potentiel d’évolution et d’adaptation des espèces. C’est cette diversité des individus d’une même espèce qui conditionne les capacités d’adaptation à court et à long terme des populations et des espèces à leur environnement, changeant dans l’espace et dans le temps (changements climatiques, pollutions, maladies...).nts climatiques, pollutions, maladies...).)
    • Biodiversité - Diversité des espèces et des milieux  + ('''La biodiversité, contraction de « diver'''La biodiversité, contraction de « diversité biologique », faite référence à la variété et la diversité des formes de vie dans le monde vivant.''' Nous abordons dans cette activité deux des grandes composantes de la biodiversité : '''la diversité des espèces et la diversité des écosystèmes''' (ou milieux de vie). La plus connue, la diversité des espèces, correspond à la diversité de toutes les formes de vie animales (dont les humains), végétales, fongiques (de la nature des champignons), microscopiques sur Terre. '''La diversité biologique s’exprime d’abord dans une profusion d’espèces, des plus petites aux plus grandes, des plus belles aux plus insignifiantes, qui jouent toutes pourtant un rôle si important'''. Pour l’instant, 1,8 million d’espèces ont été baptisé, mais les scientifiques estiment que ce n’est qu’une partie de la biodiversité. Alors combien sont-elles ? Personne ne le sait, il en existe probablement plusieurs de dizaines de millions ! '''Cependant, la diversité biologique (biodiversité) n’est pas qu’un catalogue d’espèces ou de milieux.''' Elle est définie par 3 niveaux de diversité : la diversité des espèces, la diversité des écosystèmes (milieux de vie) '''mais aussi la diversité des individus au sein d’une même espèce. Et toutes ces espèces sont liées les unes aux autres, et avec leurs milieux de vie. On parle de tissu vivant de la planète !'''n parle de tissu vivant de la planète !''')
    • Sel qui danse  + ('''Les cordes vocales''' Les cordes vocal'''Les cordes vocales''' Les cordes vocales ne sont en réalité pas vraiment des cordes, mais des petits plis musculaires au fond de ta gorge, avec une forme de lèvres presque fermées, qui vibrent au passage de l’air. Pour pouvoir produire un son avec ta voix, tu as besoin de plusieurs parties de ton corps : les poumons, pour faire le plein d’air, la gorge dans laquelle se trouvent le larynx et les cordes vocales pour créer les vibrations, et la bouche pour faire résonner les vibrations et les rendre audible. '''La résonance''' Observe la forme de ta bouche lorsque tu parles, puis lorsque tu cries. Pour crier, nous ouvrons la bouche en grand. C’est pour augmenter le volume de notre voix. On peut aussi changer la position de nos lèvres et de notre langue pour changer le son.es et de notre langue pour changer le son.)
    • Eruption volcanique  + ('''Les éruptions :''' Éruption effusive :'''Les éruptions :''' Éruption effusive : La lave qui s'accumule au sommet du volcan forme un bouchon. Si les éruptions sont calmes, le bouchon va être creusé petit à petit et la lave va s'écouler le long des pentes. Éruption explosive : Si la pression des gaz et de la lave est trop grande dans le volcan, le bouchon va sauter ! Entrainant avec lui le gaz et la lave qui vont jaillir vers le haut. Dans certains volcans, entre les éruptions, des gaz peuvent s'échapper par des fissures. Cela crée des fumées que l'on appelle des fumerolles. '''La réaction acido-basique :''' Le mélange de bicarbonate et de vinaigre provoque une réaction acido-basique suivie d'une réaction de décomposition. Le vinaigre contient de l'acide éthanoïque (CH3COOH), et le bicarbonate de sodium (aussi appelé hydrogénocarbonate de sodium, NaHCO3) est une base. Mélangés, le bicarbonate et le vinaigre réagissent et forment de l'acide carbonique (H2CO3) très instable, qui se décompose aussitôt en formant de l'eau et du dioxyde de carbone (CO2) . Le dioxyde de carbone produit sous forme gazeuse se dégage dans la bouteille. Comme le ballon fixé sur la bouteille rend l'ensemble étanche, le gaz ne peut pas s'en échapper. La pression augmente, ce qui gonfle le ballon, qui reste alors gonflé s'il n'y a pas de fuite. Voici le détail des réactions en jeu : Le bicarbonate de sodium se dissocie au contact de l'eau en ions sodium (Na+) et  bicarbonate (HCO3) : NaHCO3 → Na+ + HCO3. Le vinaigre contient une part d' acide éthanoïque (environ 5 %), composé d'ions oxonium (H3O+) et éthanoate (CH3COO) : CH3COOH <–> H3O+ + CH3COO. Les ions oxonium réagissent avec les ions bicarbonate et forment de l’acide carbonique : (H2CO3) : H3O+ + HCO3- → H2CO3 + H2O Instable, l’acide carbonique se dissocie immédiatement en formant du dioxyde de carbone (CO2), et de l'eau (H2O) : H2CO3 → H2O + CO2 La réaction complète se résume ainsi : NaHCO3 + CH3COOH → CO2 + H2O + CH3COONa Le CO2 une fois formé est soluble dans l'eau. Toutefois lorsque l'eau arrive à saturation de CO2, l'excédent commence à former des bulles qui finissent par remonter. C'est l'effervescence. (C'est la même chose que pour le sel de cuisine. Le sel de cuisine est soluble dans l'eau. Mais quand on arrive à saturation, le sel en excès reste sous forme solide). : NaHCO<sub>3</sub> + CH<sub>3</sub>COOH → CO<sub>2</sub> + H<sub>2</sub>O + CH<sub>3</sub>COONa Le CO2 une fois formé est soluble dans l'eau. Toutefois lorsque l'eau arrive à saturation de CO2, l'excédent commence à former des bulles qui finissent par remonter. C'est l'effervescence. (C'est la même chose que pour le sel de cuisine. Le sel de cuisine est soluble dans l'eau. Mais quand on arrive à saturation, le sel en excès reste sous forme solide).)
    • Découvrir les habitants du sol  + ('''Qu’est-ce qui permet de dire qu’une esp'''Qu’est-ce qui permet de dire qu’une espèce fait partie des organismes du sol ?''' Tous les habitants du sol ne vivent pas forcément dans le sol. Et à l’inverse, tout ce qui touche le sol ne fait pas forcément partie des habitants du sol (sinon, nous, humains, en ferions partie) ! Par contre nous sommes toutes et tous dépendants du sol (en tant que support, base de notre alimentation…). Ainsi, les chercheurs s’accordent à dire que '''la biodiversité du sol regroupe l'ensemble des formes de vie qui présentent au moins un stade actif de leur cycle biologique dans le sol. Elle inclut les habitants de la matrice du sol ainsi que ceux de la litière et des bois morts en décomposition.''' Toutes ces espèces, quelle que soit leur taille, interagissent directement avec le sol (via leur habitat, leur reproduction, leur alimentation...), le modèlent, agissent sur sa texture (proportion d’éléments minéraux dans un sol : sables, limons, argiles), sa structure (la taille et l’organisation des particules de sol entre elles), sa composition (les différentes couches de sol). Cette biodiversité du sol est encore assez peu connue, mais elle a un rôle très important. C’est pour cela qu’il est important de la protéger, elle et son habitat. '''Ainsi, parmi la liste des espèces proposées dans l’étape 4 - partie 2 :''' *'''font partie des habitants du sol :''' **les moisissures, les bactéries, les micro-algues, les enchytréides (vivent dans le sol), **les renards, les taupes, les vipères, les castors, les lapins, les souris (ont leurs terriers dans le sol), **les chênes et les marguerites (ont leurs racines dans le sol et s’y nourrissent). *'''ne font pas partie des habitants du sol''' : les poules, les chats, les cerfs, les pigeons, les moustiques, les libellules, les chiens, les abeilles (ils n’ont pas d’interactions directes avec le sol, excepté y trouver parfois leur nourriture).interactions directes avec le sol, excepté y trouver parfois leur nourriture).)
    • Sonnerie anti-jeune  + ('''Teen Buzz, mosquito Buzz, mosquito ring'''Teen Buzz, mosquito Buzz, mosquito ringtone.... tout ça c'est la même chose :''' Il s’agit d’un son à 17 000 Hertz, une haute fréquence que seuls les adolescents peuvent entendre ! Il a été conçu par un ingénieur anglais qui a eu une curieuse expérience étant petit, en allant voir son père dans l'entreprise où il travaillait. En effet, en entrant dans la fabrique, il a entendu un bruit terrible qui lui perçait les oreilles alors que les adultes, qui travaillaient là, n'entendaient rien ! Cette entreprise fixait les goulots de bouteilles en plastique avec des ultrasons. Plus tard, lorsque sa fille a eu des ennuis avec une bande d'andouilles, il s'est souvenu de cette expérience et a réalisé un boîtier à ultrasons anti-jeunes.C'est une entreprise anglaise qui a commercialisé ce dispositif, il y a déjà quelques années. Revers de la médaille, certains adolescents astucieux se sont saisis de cette fréquence pour en faire une sonnerie de téléphone portable inaudible par les adultes (parents et profs). Évidemment, c'est généraliser un peu rapidement : en fait, certains jeunes ont les oreilles abîmées et n'entendent rien, tandis que certains adultes ont conservé leurs oreilles d'enfant et entendent très bien ce son !s d'enfant et entendent très bien ce son !)
    • Oeuf qui ramollit  + (1/ Lorsque l’on plonge un œuf dans du vina1/ Lorsque l’on plonge un œuf dans du vinaigre, il se produit une réaction chimique. La coquille. est constituée de carbonate de calcium. C’est le principal composant du calcaire. Il est insoluble dans l’eau et heureusement car sinon cuire un œuf ne serait pas de tout repos ! Le vinaigre contient un acide : c'est l’acide acétique (sa concentration est indiquée généralement sur la bouteille en %). L'acide acétique du vinaigre réagit avec le carbonate de calcium.



      Acide acétique + carbonate de calcium -----> gaz carbonique + eau + bicarbonate de calcium

      '''CH3COOH + CaCO3 -----> CO2 + H2O + Ca (CH3COO)2'''





      Il y a donc également production d’eau et de bicarbonate de calcium. Ce dernier est soluble dans l’eau et donc ne se remarque pas à l’œil nu. Il est présent sous forme d’ions Ca(II) et d’ions bicarbonates.

      2/ Lorsque la totalité du carbonate de calcium a été consommé, la réaction s’arrête. Il ne reste alors plus que la membrane de l’œuf pour contenir le jaune et le blanc. La couleur de la coquille n’a cependant pas disparu car les pigments n’ont pas été dissous au cours de la réaction. Ils se sont donc naturellement déposés sur cette membrane. Ils ne sont toutefois pas solidaires de cette dernière et le fait de simplement frotter le couteau dessus permet de les retirer.


      On a alors l’impression d’avoir obtenu un œuf dur. Mais si l’on tient cet œuf entre les mains, on constate que celui-ci reste assez malléable et semble contenir un liquide.

      Pour confirmer cette hypothèse, on déchire cette membrane. Le jaune et le blanc de l’œuf sont bien encore liquides. L’intérieur de l’œuf est intact ? Pas si sûr…


      Si on compare le pH du blanc de l’œuf de l’expérience avec celui d’un œuf intact, on constate qu’il est moins élevé dans le premier cas, ce qui indique que du vinaigre est entré. Il semblerait donc que la membrane ne soit pas si imperméable que ça. Cette membrane, est "hémiperméable", elle laisse passer un certain nombre d'éléments, dont des gaz nécessaires à la respiration de l'oeuf (en effet quand le foetus se céveloppe, il respire, c'est à dire qu'il rejette du CO2 et absorbe de l'O2) .


      En principe, on pourrait donc cuire un œuf juste avec du vinaigre. Pour s’en assurer il est possible de faire l’expérience suivante : verser le contenu d’un œuf dans un récipient et y ajouter du vinaigre. On observe alors la formation de filaments blancs. L’œuf coagule (comme lorsqu’on le cuit). Si on le laisse suffisamment longtemps (au moins 5 jours), la totalité de l’œuf aura coagulé.


      '''Troublant, non ?!'''


      4/ Pas tant que ça quand on sait que l’œuf est principalement constitué de protéines comme l’ovalbumine. En effet, ces protéines sont constituées d’acides aminés attachés ensemble par des liaisons covalentes (fortes). Leur forme tridimensionnelle est assurée par des liaisons faibles de différente nature. Or le fait d’abaisser le pH rompt un certain nombre de ces liaisons (dénaturation) et permet à cette chaîne de prendre une forme linéaire. Cette nouvelle structure rend possible certaines interactions avec d’autres molécules (elle a en quelque sorte « les bras libres »). Et notamment l’eau avec laquelle elle s’associe par l’intermédiaire de ponts disulfures (coagulation). L’interaction entre ces différentes chaînes construit un réseau qui emprisonne les molécules d’eau et rigidifie l’œuf.

      Ramollir un oeuf Coagulationoeuf.jpg



      5/ En revanche si vous faites cette expérience qui demande vraiment beaucoup de patience et de précautions, vous constaterez que l’œuf cuit de cette manière n’a pas vraiment un aspect très comestible. Pourtant il l’est !
      anche si vous faites cette expérience qui demande vraiment beaucoup de patience et de précautions, vous constaterez que l’œuf cuit de cette manière n’a pas vraiment un aspect très comestible. Pourtant il l’est !)
    • Poivre dans l'eau  + (<u>Explication de la tension superfiExplication de la tension superficielle Chaque molécule d'eau est attirée par ses voisines. Les molécules sont reliées entre elles par des liaisons électriques et magnétiques, c'est ce qu'on appelle la '''cohésion'''. La cohésion est facilement observable dans un verre d'eau : l'eau est "entière", les molécules ne se baladent pas toutes seules, elles sont toutes ensembles collées les unes aux autres. Que se passe-t-il à la surface de l'eau ? Les molécules d'eau qui sont à la surface ont moins de voisines: elles ont des molécules d'eau uniquement en dessous. Elles vont donc se lier à moins de molécules d'eau, mais les liaisons seront beaucoup fortes. Cette force de liaison se matérialise par une membrane où la tension est plus forte, c'est ce qu'on appelle la tension superficielle. Pourquoi le poivre fuit avec le produit vaisselle? En touchant la surface de l'eau avec du détergent à vaisselle, on affaiblit la tension superficielle, cet effet se propage et le poivre se disperse, car la tension superficielle sur le bord du plat est supérieure à celle que l'on retrouve au centre; le poivre est donc attiré vers le bord du plat. Le liquide vaisselle est un agent tensioactif, c'est à dire qu'il modifie la tension superficielle entre deux surfaces (dans ce cas-ci en l'abaissant). Un agent tensioactif est '''amphiphile,'''il est constitué de deux parties de polarité différente: l’une lipophile (qui peut se lier aux matières grasses) et l’autre hydrophile (qui peut se lier à l’eau).
      grasses) et l’autre hydrophile (qui peut se lier à l’eau). <br/>)
    • Lumière en réflexion  + (=== '''Questions sans réponses''' === ''De=== '''Questions sans réponses''' === ''Des questions? '' D'où viennent les photons ? Pourquoi les photons forment-ils des rayons au lieu de rester isolés ? D'où vient le terme "photon" ? Comment la lumière peut-elle traverser la matière sans la détruire puisque qu'elle-même est composée de particules ? === [[http://www.wikidebrouillard.org/index.php?title=R%C3%A9flexion_de_la_lumi%C3%A8re&action=edit§ion=11 modifier]] '''Allons plus loin dans l'explication''' === ''Développons les concepts scientifiques associés.'' [http://fr.wikipedia.org/wiki/Lumi%C3%A8re Lumière(wikipédia)] La lumière a une double nature. Elle peut se comporter soit comme une onde soit comme un corpuscule. Pour mettre en évidence l'aspect ondulatoire, on établit des interférences constructives ou destructives en superposant plusieurs ondes réfléchies ou transmises et, dans le cadre de l'aspect corpusculaire, on peut mettre en évidence l'effet photoélectrique (arracher des électrons sur une plaque métallique). Concernant l'effet photoélectrique, il s'agit de l'arrachage d'électrons d'une surface suite à l'excitation électromagnétique de cette surface, autrement dit, du bombardement photonique. Ceci peut également être mis en relation avec l'effet Compton qui résulte de la collision entre un photon et un électron à la différence près que dans cet effet le photon peut être réutilisé après la collision. le photon peut être réutilisé après la collision.)
    • Ballon electrostatique  + (===Allons plus loin dans l'explication=== ===Allons plus loin dans l'explication=== Coulomb, physicien français (1736 – 1806), a démontré que la présence de deux corps chargés provoque l’apparition de forces attractives ou répulsives selon le signe de leurs charges q. Cette force F est inversement proportionnelle à la distance r qui les sépare au carré : Sur la figure suivante, on peut se rendre compte que la force d’attraction diminue rapidement avec l’éloignement. Plus l’éloignement est important, plus il faut arracher d’électrons pour pouvoir soulever un bout de papier.
      Si on veut soulever un bout de papier de 10 mg avec ce procédé, il faudra donc arracher environ 10 700 000 000 000 000 000 000 électrons du ballon ! Le passage répété des cheveux sur le ballon de baudruche arrache des électrons aux atomes situés à la surface de celui-ci. Les électrons étant des charges négatives, cet endroit du ballon devient chargé positivement. Les cheveux ayant perdu des électrons sont alors chargés positivement à leur surface. En revanche, le papier n’est pas chargé. Il est dit électriquement neutre. Pourquoi le papier est-il attiré par le ballon frotté ? En effet, la force dont parle Coulomb ne s’applique que pour deux objets chargés. Or ce n’est pas le cas ici car le papier est resté électriquement neutre. En fait, le fait d’approcher une source de charge positive de la feuille a tendance à la polariser. C’est-à-dire qu’il y a d’infimes migrations de charges des atomes (les électrons essentiellement) vers la face opposée au ballon. La feuille se retrouve alors avec une face de charge opposée à celle du ballon et elle est donc attirée par le ballon. Pourquoi seuls les électrons sont-ils arrachés ? Pour bien visualiser le problème, prenons l’exemple de l’atome d’hydrogène. Il est constitué d’un noyau et d’un électron qui gravite autour (dans le cas général un atome, à l’état stable, possède autant de protons que d’électrons). Pour simplifier la représentation, nous représentons l’orbite de l’électron comme circulaire. L’électron est assez éloigné du noyau. Les forces qui l’empêchent de sortir de son orbite diminuent avec sa distance au noyau. De plus, il existe une autre force appelée interaction forte qui assure la cohésion du noyau. En effet, le noyau d’un atome est composé de particules neutres et de particules positives. Les particules positives se repoussent entre elles d’après la loi de Coulomb. C’est cette interaction forte qui empêche les protons de s’éloigner. Donc le noyau est très difficile à « casser ». En revanche, l’électron n’oppose presque pas de résistance. Et le simple passage des cheveux permet de l’extraire de son atome. En réalité, seuls les électrons de la couche externe, c’est-à-dire les plus éloignés du noyau, peuvent être « arrachés » (les atomes répartissent les électrons sur différentes couches). On dit alors que l’on a ionisé l’atome.
      ntes couches). On dit alors que l’on a ionisé l’atome.)
    • Air : bouclier invisible  + (Avant de le plonger dans l'eau, le verre eAvant de le plonger dans l'eau, le verre est, en plus du mouchoir, rempli d'air. Lors de l'immersion, l'air présent dans le verre reste bloqué à l'intérieur. Mais si l'air ne parvient pas à s'échapper, l'eau ne peut pas non plus remonter dans le verre, c'est pourquoi le mouchoir reste sec. Pendant l'expérience, le verre est placé dans l'eau à la verticale. Si on l'incline progressivement, l'air bloqué à l'intérieur s'échappe : on observe des bulles qui remontent vers la surface. L'air est donc moins dense que l'eau, et non soluble avec celle-ci.e que l'eau, et non soluble avec celle-ci.)
    • Expansion de l'univers  + (Avec les théories de la relativité restreiAvec les théories de la relativité restreinte et de la relativité générale, notre représentation de l'univers a radicalement changé au 20e siècle. L'univers est en expansion. Cela signifie que les distance entre les astres augmentent avec le temps. Etrangement pourtant, ce ne sont pas les astres qui bougent. C'est l'espace-temps entre les astres qui se dilate comme le fait le caoutchouc d'un ballon qu'on gonfle. L'idée que l'univers ne serait pas infini, fixe, statique, éternel date de bien avant le début du 20e siècle. Le paradoxe de Cheseaux Olbers a été exposé de manière documentée pour la 1ère fois par Thomas Digges en 1576. Si on suppose un univers infini, fixe, statique et éternel, il contient donc une infinité d'étoiles réparties de manière homogène. Si cela est le cas, quelle que soit la direction dans laquelle on regarde, il devrait y avoir une infinité d'étoile. Donc le ciel nocturne devrait être occupé en tout point par une étoile. Donc le ciel nocturne devrait être aussi brillant qu'un étoile. De manière amusante, Einstein était persuadé que l'univers était fixe au début de sa carrière. Il a ainsi ajouté une constante dans ses équations pour les rendre compatibles avec l'hypothèse d'un univers fixe. Ce sont d'autres chercheurs qui ont produit le modèle du Big Bang à partir de la théorie de la relativité générale d'Eintein. L'expression "Big bang" a été utilisée pour la première fois à la radio dans le but de moquer un modèle considéré par de nombreux astrophysiciens comme absurde.de nombreux astrophysiciens comme absurde.)
    • La fonte des glaces  + (Cette expérience permet d’expliquer la fonCette expérience permet d’expliquer la fonte des glaces sur la planète. As-tu déjà entendu parler de glaciers, de banquise et d’iceberg ? '''Le glacier''' se forme en général en haute montage ou au niveau des pôles grâce à l'accumulation de la neige. En se tassant sous son propre poids, la neige devient compacte : elle expulse progressivement l'air qu'elle renferme et se transforme en glace. Lorsqu’on parle de glaciers, on peut utiliser les mots calotte glaciaire et inlandsis : la calotte glaciaire est un très grand glacier, et l'inlandsis correspond à plus de 50 000 km² de glace terrestre (l’Arctique et l’Antarctique sont les deux seuls inlandsis qui existent à ce jour sur la planète). Parfois, un morceau de glacier, parfois très gros, se détache et tombe dans la mer où il dérive au gré des courants : c’est ce qu’on appelle un '''iceberg'''. '''La banquise''' se forme en mer, contrairement au glacier. Des cristaux de glace se forment lorsque l'eau atteint -1,8 °C. Ces cristaux se solidarisent et forment une couche de glace qui peut atteindre 3 à 4 mètres d'épaisseur. Que se passe-t-il lorsque la banquise ou les glaciers fondent ? L’expérience nous montre que de la fonte de la glace déjà présente dans l’eau (= banquise) ne fait pas monter le niveau de l’eau (verre 1). Par contre, lorsque la glace terrestre (= glaciers, chutes d'icebergs) fond, nous observons une augmentation du niveau de l'eau (verre 2). Le résultat observé dans le verre 1 s'explique par le rôle de la '''poussée d'Archimède'''. Celle-ci correspond à la force verticale, dirigée de bas en haut, que subit un corps plongé dans un fluide (liquide ou gaz), opposée au poids du volume de fluide déplacé. La poussée d'Archimède permet d'expliquer notamment pourquoi un bateau flotte ou une montgolfière peut s'élever dans les airs, ou comment un plongeur ou un sous-marin peuvent contrôler leur flottabilité en faisant varier la pression d'un gaz dans un réservoir.
      En réalité, l'eau sous forme de glace occupe un peu plus de place que l’eau liquide. Tu l'as peut-être déjà remarqué à la maison après avoir placé de l'eau ou un bac à glaçons au congélateur. Il arrive parfois aussi que le gel fasse éclater un tuyau d'eau mal protégé lorsque les températures sont très basses. Ce phénomène est particulier à l'eau et à quelques autres composés et est lié aux propriétés chimiques des liaisons atomiques. Cependant, comme tu l'as sans doute observé, les glaçons placés dans le verre 1 ne sont pas totalement immergés dans l'eau. Grâce à la poussée d'Archimède, on comprend ainsi que le volume de glace immergé correspond au volume d'eau nécessaire pour égaler le poids du glaçon (ou de l'iceberg !). Selon cette même loi, un glaçon produit en fondant le même volume d'eau que la glace solide occupait précédemment. Le niveau de l'eau reste donc le même.
      A présent que nous avons compris comment la fonte des glaces entraîne la montée du niveau des océans, il reste à expliquer '''pourquoi''' ce phénomène se produit à l'heure actuelle. En effet, depuis un siècle, le niveau des mers et des océans s'est élevé d'environ 20 à 30 cm. Au cours de la même période, la température moyenne sur la planète a augmenté d'environ 0,8 °C (à 0,2 °C près). L'atmosphère et les océans sont intimement liés : lorsque la température de l'atmosphère augmente, celle des océans augmente aussi. Le '''changement climatique''' est une des raisons principales de la montée des eaux. Cependant, contrairement à ce que l'on pourrait penser intuitivement, la fonte des glaces n'explique pas à elle seule cette montée des eaux. Un autre phénomène lié à la hausse des températures joue également un rôle très important, il s'agit de la '''dilatation thermique'''. L’eau est un corps qui se dilate sous l’effet d’une augmentation de température. La dilatation signifie l’augmentation du volume : lorsqu’un corps se dilate, il prend plus de place. Les molécules d’eau (les briques microscopiques qui composent l’eau) s’agitent lorsque la température augmente, et prennent donc plus de place. A titre d’exemple, imagine qu'une cinquantaine de personnes sont dans une grande salle : si les personnes restent immobiles ou bougent peu, elles tiennent facilement dans cet espace restreint. Par contre, si les personnes commencent à s’agiter, ou à danser, elles vont s’éloigner les unes des autres et prendre plus d’espace. C’est un peu pareil pour les molécules d’eau : quand la température augmente elles s’agitent, s’écartent les unes des autres, et le volume de l’eau augmente.
      Même si notre expérience ne mettait pas en évidence directement le rôle de la dilatation dans la montée du niveau de l'eau, celle-ci est toutefois bel et bien présente et il se pourrait d'ailleurs que son impact soit observable dans de bonnes conditions. En effet, dans l'expérience, nous avons utilisé de l'eau chaude pour faire fondre les glaçons plus vite. Une fois les glaçons fondus, ceux-ci ont fait légèrement baisser la température de l'eau contenue dans le verre 1 et ont donc provoqué une faible diminution de son volume. Cela pourrait donc avoir également contribué au résultat de l'expérience (le verre 1 ne déborde pas). Pour s'en assurer, on peut refaire l'expérience avec de l'eau froide et vérifier que nous obtenons bien les mêmes résultats. Dans ce cas, les conclusions de notre expérience resteraient toujours valables.
      La fonte des glaces et la dilatation thermique des eaux de surface des mers et océans, toutes deux liées au changement climatique, sont à l'origine de la hausse du niveau des océans (en réalité, de nombreux autres facteurs contribuent à la hausse observable, mais dans des proportions bien moindres). Les '''conséquences''' de cette montée des eaux risquent d'être dramatiques au cours des prochaines décennies. En effet, les modèles proposés par les chercheurs prédisent qu'à l'horizon 2100 l'élévation du niveau des eaux pourrait atteindre 50 cm, voire jusqu'à 3 m si on prend en compte les hypothèses les plus pessimistes ! Or, une grande part de la population mondiale vit aujourd'hui dans la zone littorale, et ce chiffre est en constante augmentation (634 millions de personnes vivraient ainsi à proximité des côtes et à une altitude inférieure à 10 m). Le retrait du trait de côte va donc provoquer des déplacements de ces populations et créer ce que l'on appelle des réfugiés climatiques. Les premiers territoires touchés seront d'une part les îles de faible altitude de l'Océan Pacifique (Tuvalu, Kiribati, etc.) et les pays où les densités de populations littorales sont les plus fortes, principalement en Asie (Chine, Inde, Bangladesh, Indonésie, Vietnam). Les humains ne seraient pas les seuls impactés, car les zones littorales sont aussi de grands réservoirs de biodiversité. Une montée des eaux pourrait entraîner la submersion et l'érosion de nombreux habitats, la salinisation des estuaires, l'accroissement des inondations, etc.
      x pourrait entraîner la submersion et l'érosion de nombreux habitats, la salinisation des estuaires, l'accroissement des inondations, etc.)
    • Lampe a lave, sans lampe  + (Cette lava lampe fait intervenir plusieursCette lava lampe fait intervenir plusieurs phénomène. Il y a la densité. Il y a l'hydrophobicité. Il y a la réaction bicarbonate-vinaigre. Il y a la tension superficielle. Cela fait vraiment beaucoup de choses qui se produisent en même temps ! '''Le vinaigre coule dans l'huile car il est moins dense que l'huile''' Les différentes matières ont des propriétés différente. La densité compare des matières deux à deux. Dire qu'un corps est plus dense qu'un autre signifie que la masse volumique du corps n°1 est plus importante que la masse volumique du corps n°2. La masse volumique d'un corps se calcule en divisant le poids de ce corps par son volume. Par exemple pour un litre d'eau on va diviser 1kg (le poids d'un litre d'eau) par son volume (1l). Dans le système de mesure international, l'unité de référence utilisée pour la masse volumique est le kg/m3. Dans ce système, dire qu'un litre d'eau pèse 1kg se dit : la masse volumique de l'eau est de 1000 kg / m3 (il y a 1000l dans un m3). En fait ce n'est pas tout à fait exact. En effet la température influe sur la masse volumique d'un corps. Ainsi la masse volumique de l'eau est de 1000 kg / m3 à 4°C et de 998,3 kg / m3 à 20°C La masse volumique du vinaigre est très proche de celle de l'eau car le vinaigre contient essentiellement de l'eau donc 998,3kg/m3 à température ambiante La masse volumique d'une huile est en général comprise en 800 et 900 kg / m3 à température ambiante. Comme 998 > 900, quand on verse de l'huile dans un bocal qui contient du vinaigre, l'huile se répartit à a surface du vinaigre. Ceci peut aussi s'exprimer en utilisant le concept de poussée d'Archimède. "« Tout corps plongé dans un fluide au repos, entièrement mouillé par celui-ci ou traversant sa surface libre, subit une force verticale, dirigée de bas en haut et opposée au [https://fr.wikipedia.org/wiki/Poids poids] du volume de fluide déplacé. Cette force est appelée ''poussée d'Archimède''. Elle s'applique au centre de masse du fluide déplacé, appelé ''centre de poussée''. »" (issu de Wikipedia). Quand la poussée d'archimède d'un corps compense son poids, ce corps flotte. Quand la poussée d'archimède d'un corps ne compense pas son poids, le corps coule (qu'il soit liquide ou solide n'y change absolument rien !) Or la poussée d'archimède qui s'applique sur le volume d'huile dépend du poids du volume de vinaigre "déplacé", donc de sa masse volumique. '''L'huile et le vinaigre ne se mélangent pas car le vinaigre est hydrophile alors que l'huile est hydrophobe''' Les molécules sont formées d'atomes assemblés entre eux. Cet assemblage n'est pas toujours complètement "parfait" et dans certaines molécules, les électrons qui entourent un atomes sont attirés par "l'atome d'à côté". C'est le cas de l'eau de formule H2O. Les életrons des atomes d'hydrogène sont attirés par l'atome d'oxygène et au final dans une molécule d'eau (neutre électriquement) les atomes d'hydrogène sont "un peu" positifs et les atomes d'oxygène "un peu négatifs". Au final les atomes d'hydrogène d'une molécule d'eau sont attirés par l'atome d'oxygène de la molécule d'à côté. Quand les molécules (d'eau ou autres) interagissent entre elles de cette façon, on appelle les force qui les attirent les unes vers les autres "liaison hydrogène". Quand une molécule est fortement concernée par ce genre de phénomène ont dit qu'elle est "polaire" car des "pôles électriques" ont tendance à se former à l'intérieur. Quand une molécule n'est que peu ou pas concernée par ce phénomène on dit qu'elle est "apolaire". Les molécules polaires ont donc tendance à s'attirer les unes les autres. Dans ces conditions quand on mélange des molécules polaire et apolaires, les molécules polaires s'attirent, se rapprochent, forment de micro goutelettes et excluent les molécules apolaires. C'est ce qui se passe avec le vinaigre et l'huile. L'eau est polaire, l'huile apolaire. (Le vinaigre est essentiellement formé d'eau). Les molécules d'eau restent scotchées entre elles donc les deux liquides ne se mélangent pas. Un composé "hyrdrophile' (qui aime l'eau, qui va se mélanger avec l'eau) est polaire. Un composé hydrophobe (qui fuit l'eau, qui va s'exclure de l'eau) est apolaire. '''Quand on met du bicarbonate de sodium avec du vinaigre, il se produit une réaction dite "acido-basique" dont un des résultats est la production de CO2 (dioxyde de carbone)''' Le bicarbonate de sodium se dissocie au contact de l'eau en ions sodium (Na+) et  bicarbonate (HCO3) : NaHCO3 → Na+ + HCO3. Le vinaigre contient une part d' acide éthanoïque (environ 5 %), composé d'ions oxonium (H3O+) et éthanoate (CH3COO) : CH3COOH <–> H3O+ + CH3COO. Les ions oxonium réagissent avec les ions bicarbonate et forment de l’acide carbonique : (H2CO3) : H3O+ + HCO3- → H2CO3 + H2O Instable, l’acide carbonique se dissocie immédiatement en formant du dioxyde de carbone (CO2), et de l'eau (H2O) : H2CO3 → H2O + CO2 La réaction complète se résume ainsi : NaHCO3 + CH3COOH → CO2 + H2O + CH3COONa Le CO2 une fois formé est soluble dans l'eau. Toutefois lorsque l'eau arrive à saturation de CO2, l'excédent commence à former des bulles qui finissent par remonter. C'est l'effervescence. (C'est la même chose que pour le sel de cuisine. Le sel de cuisine est soluble dans l'eau. Mais quand on arrive à saturation, le sel en excès reste sous forme solide). Le bicarbonate de sodium est aussi appelé bicarbonate de soude. '''Les bulles de dioxyde de carbone restent collées sur le vinaigre quand la goutte est au fond du pot et elles éclatent à la surface de l'huile en raison de la tension supercielle''' Le vinaigre réagit avec le bicarbonate pour former du CO2. Celui-ci est en trop grandes quantités pour rester dissout dans le vinaigre, il forme de petites bulles. Sa densité est beaucoup plus faible que celle du vinaigre dont il remonte à la surface de la goutte de vinaigre. Quand il arrive à la surface de la goutte de vinaigre, il rencontre de l'huile. Si le seul phénomène en cours était la différence de densité, la bulle remonterait seule à la surface de l'huile. Mais ce n'est pas le cas. Le CO2 possède lui même une légère charge positive car la charge négative de l'atome de carbone C ne suffit pas tout à fait à équilibrer les charges positives des atomes d'oxygène O. Donc le CO2 se retrouve a avoir plus d'affinité pour l'eau (molécule polaire) que pour l'huile (molécule apolaire). Cette affinité du CO2 pour l'eau qui compose le vinaigre fait que la bulle de CO2 est plus stable en restant scotchée sur le vinaigre qu'en remontant dans l'huile. La tension qui existe à la surface de la bulle est plus faible au contact du vinaigre qu'au contact de l'huile. Donc la bulle reste scotchée jusqu'à ce que "l'effet bouée" fasse remonter le tout. Une fois à la surface, la bulle entre en contact avec l'air, la tension de contact à la surface de la bulle diminue brutalement et la bulle éclate.
      ose le vinaigre fait que la bulle de CO2 est plus stable en restant scotchée sur le vinaigre qu'en remontant dans l'huile. La tension qui existe à la surface de la bulle est plus faible au contact du vinaigre qu'au contact de l'huile. Donc la bulle reste scotchée jusqu'à ce que "l'effet bouée" fasse remonter le tout. Une fois à la surface, la bulle entre en contact avec l'air, la tension de contact à la surface de la bulle diminue brutalement et la bulle éclate.<br/>)
    • Baguette magique  + (Coulomb, physicien français (1736 – 1806),Coulomb, physicien français (1736 – 1806), a démontré que la présence de deux corps chargés provoque l’apparition de forces attractives ou répulsives selon le signe de leurs charges q. Cette force F est inversement proportionnelle à la distance r qui les sépare au carré : '''F(peigne/balle) = [ q(peigne)*q(balle) ]/ [ 4*pi*Eo*r²]''' Sur la figure suivante, on peut se rendre compte que la force d’attraction diminue rapidement avec l’éloignement. Plus l’éloignement est important, plus il faudra arracher d’électrons pour pouvoir déplacer une balle. L’attraction exercée par un proton sur un électron éloigné de 5 mm dans les conditions idéales est de : '''F = 9,2.10^-24 N'''
      Le passage répété du tissu sur le peigne va arracher des électrons aux atomes situés à la surface de celui-ci. Les électrons étant des charges négatives, cet endroit du peigne est chargé positivement. Le tissu ayant perdu des électrons est alors chargé positivement à sa surface. En revanche, la balle n’est pas chargée. Elle est dite électriquement neutre. ''Pourquoi la balle est-elle attirée par le peigne frotté ?'' En effet, la force dont parle Coulomb ne s’applique que pour deux objets chargés. Or ce n’est pas le cas ici car la balle est restée électriquement neutre. Le fait d’approcher une source de charge positive de la balle va avoir tendance à la polariser, c’est-à-dire qu’il va y avoir d’infimes migrations de charges des atomes (les électrons essentiellement) vers la face opposée au peigne. La balle se retrouve alors avec une face de charge opposée à celle du peigne et elle est donc attirée par le peigne. ''Pourquoi seuls les électrons sont-ils arrachés ?'' Pour bien visualiser le problème, prenons l’exemple de l’atome d’hydrogène. Il est constitué d’un noyau et d’un électron qui gravite autour (dans le cas général un atome, à l’état stable, possède autant de protons que d’électrons). Pour simplifier la représentation, nous représentons l’orbite de l’électron comme circulaire.
      la représentation, nous représentons l’orbite de l’électron comme circulaire.)
    • Ballon électrostatique - Ballon magique  + (Coulomb, physicien français (1736 – 1806),Coulomb, physicien français (1736 – 1806), a démontré que la présence de deux corps chargés provoque l’apparition de forces attractives ou répulsives selon le signe de leurs charges q. Cette force F est inversement proportionnelle à la distance r qui les sépare au carré : Sur la figure suivante, on peut se rendre compte que la force d’attraction diminue rapidement avec l’éloignement. Plus l’éloignement est important, plus il faut arracher d’électrons pour pouvoir soulever un bout de papier. L’attraction exercée par un proton sur un électron éloigné de 5 mm dans les conditions idéales est de :
      F = 9,2.10^-24 N
      Si on veut soulever un bout de papier de 10 mg avec ce procédé, soit vaincre un poids de 0,098 N, il faudra donc arracher environ 10 700 000 000 000 000 000 000 électrons du ballon ! Le passage répété des cheveux sur le ballon de baudruche arrache des électrons aux atomes situés à la surface de celui-ci. Les électrons étant des charges négatives, cet endroit du ballon devient chargé positivement. Les cheveux ayant perdu des électrons sont alors chargés positivement à leur surface. En revanche, le papier n’est pas chargé. Il est dit électriquement neutre. Pourquoi le papier est-il attiré par le ballon frotté ? En effet, la force dont parle Coulomb ne s’applique que pour deux objets chargés. Or ce n’est pas le cas ici car le papier est resté électriquement neutre. En fait, le fait d’approcher une source de charge positive de la feuille a tendance à la polariser. C’est-à-dire qu’il y a d’infimes migrations de charges des atomes (les électrons essentiellement) vers la face opposée au ballon. La feuille se retrouve alors avec une face de charge opposée à celle du ballon et elle est donc attirée par le ballon. Pourquoi seuls les électrons sont-ils arrachés ? Pour bien visualiser le problème, prenons l’exemple de l’atome d’hydrogène. Il est constitué d’un noyau et d’un électron qui gravite autour (dans le cas général un atome, à l’état stable, possède autant de protons que d’électrons). Pour simplifier la représentation, nous représentons l’orbite de l’électron comme circulaire. L’électron est assez éloigné du noyau. Les forces qui l’empêchent de sortir de son orbite diminuent avec sa distance au noyau. De plus, il existe une autre force appelée interaction forte qui assure la cohésion du noyau. En effet, le noyau d’un atome est composé de particules neutres et de particules positives. Les particules positives se repoussent entre elles d’après la loi de Coulomb. C’est cette interaction forte qui empêche les protons de s’éloigner. Donc le noyau est très difficile à « casser ». En revanche, l’électron n’oppose presque pas de résistance. Et le simple passage des cheveux permet de l’extraire de son atome. En réalité, seuls les électrons de la couche externe, c’est-à-dire les plus éloignés du noyau, peuvent être « arrachés » (les atomes répartissent les électrons sur différentes couches). On dit alors que l’on a ionisé l’atome.
      ntes couches). On dit alors que l’on a ionisé l’atome.)
    • Liquide qui change de couleur  + (En chimie, le pH est représenté par un chiEn chimie, le pH est représenté par un chiffre situé entre 0 et 14. Les produits acides ont un pH inférieur à 7, cela signifie que les acides qu’ils contiennent sont plus forts que les bases qu'ils contiennent. C’est le côté acide qui domine. Les produits basiques ont un pH supérieur à 7, cela signifie que les bases qu’ils contiennent sont plus fortes que les acides qu’ils contiennent, c’est alors le côté basique qui domine. Lorsqu'un produit contient des bases et des acides de forces égales, on dit qu'il est neutre, et son pH est de 7. Un produit dont le pH est égal ou proche de 1 est appelé un « acide fort ». Un produit est une « base forte » si son pH est égal ou proche de 14. Ce sont des produits très corrosifs, autrement dit ils peuvent brûler la peau et dissoudre des matériaux. Le jus de chou rouge est un indicateur colorimétrique de pH, sa couleur change selon le pH des produits avec lesquels on le mélange. Pour connaître approximativement le pH d’un produit, il suffit de comparer la couleur obtenue lorsqu’on le mélange avec un produit avec les couleurs que l’on obtient avec des produits de pH connu. Cette référence est une gamme étalon, comme sur la photo ci-dessus, où l’on découvre les couleurs que prend le jus de chou rouge à différents pH. En comparant les couleurs, on arrive à estimer le pH des produits que l’on teste :
      *le vinaigre (pH = 2,5 à 3, couleur obtenue : rose vif) *le bicarbonate de sodium (pH = 8,4, couleur obtenue : bleu) *le soda (3 à 5 selon le soda, couleur obtenue : rose vif à rose violacé). De nombreux sodas, dont le cola, contiennent en effet de l’acide citrique, qui est tout simplement l’acide présent naturellement dans le citron. *le jus de citron (pH = 2,5 environ, couleur obtenue : rose vif) *la lessive (pH = 11 à 13, couleur obtenue : vert à jaune verdâtre) *l'eau du robinet : son pH est souvent proche du neutre (pH = 7), mais cela varie beaucoup d’un lieu à l’autre. L’eau pure (que l’on peut préparer en laboratoire) est seulement constituée de molécules H2O et son pH = 7. (test optionnel : l’eau de mer de France a un pH voisin de 8, elle est donc basique (couleur obtenue : bleu))
      t donc basique (couleur obtenue : bleu)) <br/>)
    • Aéroglisseur  + (En fait, l’aéroglisseur n’a aucun contact En fait, l’aéroglisseur n’a aucun contact avec la surface sur laquelle il repose. Il est en permanence sur coussin d’air. La présence d'un coussin d'air réduit considérablement le frottement et permet à l'aéroglisseur d'évoluer. Le principe est simple. L'air qui s'échappe du ballon s’évacue sous le disque. Les forces très importantes s’exerçant sur le support sont telles que le disque est soulevé de 1 ou 2 millimètre(s) par rapport à la table : il est en sustentation. Cet écart de quelques millimètres lui permet ainsi de "survoler" la surface sur laquelle il se trouve...r" la surface sur laquelle il se trouve...)
    • Ampoule à incandescence  + (L'acier est un matériau qui a un haut poinL'acier est un matériau qui a un haut point de fusion : 1482°C. C'est à dire qu'il ne fond pas avant d'avoir atteint cette température. En revanche, lorsqu'il atteint une température assez haute, l'acier rougit et émet de la lumière. C'est ce qu'on appelle l'incandescence. Pour éviter que la laine d'acier brûle, il faut chasser l'oxygène de la bouteille. La réaction du bicarbonate de soude avec le vinaigre remplit la bouteille avec du dioxyde de carbone, ce qui permet d'éviter la combustion.one, ce qui permet d'éviter la combustion.)
    • Déplacements de l'air  + (L'air est composé de gaz (azote, oxygène, L'air est composé de gaz (azote, oxygène, des traces d'autres gaz). Un gaz est constitué de molécules. La masse d'une molécule est constante mais avec la chaleur son volume augmente. Donc le rapport entre la masse et le volume (densité) diminue. Exemple numerique: Une mole d'azote pèse 28 g. Une mole d'azote à 0°C occupe 22,4 litre. Sa masse volumique est 28 / 22,4 = 1,25 kg / m3 ou 1,25 g/L Loi de Mariotte : PV/T = Cste P = Pression atmosphérique (Pa ou bar) V = volume (kg/m3 ou g/L) T = Température (K) La même mole à 50°C (293 K) occupe 22,4 * (273 + 50 ) / 273 = 26, 5 L Sa masse volumique à 50° est 28 / 26,5 = 1,056 kg / m3 ou 1,056 g/L La densité (masse volumique) de la molécule d'azote passe de '''1,25 g/L''' à 0° à '''1,056 g/L''' à 50°1,25 g/L''' à 0° à '''1,056 g/L''' à 50°)
    • Doigts - saucisses  + (L'illusion d'optique résulte d'une mauvaisL'illusion d'optique résulte d'une mauvaise interprétation par le système visuel des informations qui lui parviennent. Le système visuel ne fonctionne pas comme un instrument de mesure, mais comme un moyen d'interagir efficacement avec l'environnement. Dans la vie quotidienne, en cas de doute, un changement de point de vue donne une vision plus exacte de la réalité. Dans les illusions visuelles, cette possibilité est bloquée, créant une image faussée de la réalité, y compris en faisant apparaître un objet inexistant, ou rendant « invisible » un objet pourtant présent. https://fr.wikipedia.org/wiki/Illusion_d%27optiquefr.wikipedia.org/wiki/Illusion_d%27optique)
    • Boulette rebelle  + (La bouteille est indéformable. Comme elle La bouteille est indéformable. Comme elle est ouverte, la pression exercée par l'air sur les parois est la même à l'intérieur et à l'extérieur. En soufflant dans la bouteille, on augmente le volume d'air à l'intérieur, mais comme le volume de la bouteille ne peut pas augmenter (elle est indéformable), il faut que l'air en trop sorte, entraînant la boulette de papier hors de la bouteille. En soufflant avec une paille sur la boulette, l'air est canalisé et orienté en seul point. La vitesse de l'air augmente, car en soufflant dans une paille, le diamètre du faisceau d'air expiré est plus petit. Pour une même quantité d'air soufflé, si le diamètre diminue, la vitesse augmente (le même phénomène se produit au niveau d'un barrage sur une rivière). La force exercée par l'air sur la boulette est plus importante, ce qui permet de la déplacer. En contrepartie, l'air sortant de la bouteille pour éviter la surpression n'est pas canalisé, sa vitesse et sa force sur la boulette ne sont donc pas suffisantes pour la faire ressortir. La force de l'air entrant dans la bouteille étant supérieure à celle de l'air sortant, la boulette entre dans la bouteille.tant, la boulette entre dans la bouteille.)
    • Du fer qui pompe l'air  + (La formation de la rouille est appelée la La formation de la rouille est appelée la corrosion. La corrosion est l'altération d'un matériau par réaction chimique avec un oxydant. Les conditions nécessaires à la réalisation de ce phénomène sont la présence d'eau (H2O) et de dioxygène (O2).ub>2</sub>O) et de dioxygène (O<sub>2</sub>).)
    • Pupille mobile  + (La taille de la pupille est contrôlée par La taille de la pupille est contrôlée par des mouvements réflexes (involontaires) de contraction (myosis) et de détente (mydriase) du muscle de l'iris, qui sont déclenchés par la quantité d'impulsions lumineuses traversant le nerf optique. Plus il y a de lumière et plus il y a d’impulsions, entraînant le muscle à fermer la pupille. Parmi ces impulsions certaines sont couplées avec les muscles des deux yeux : c’est ainsi que la variation de la pupille est identique sur chaque œil, et ceci au même instant.


      Outre la quantité de lumière reçue par l’œil, certaines modifications de l'état physiologique de l'organisme modifient aussi le diamètre de la pupille : émotion forte, prise de drogues, etc.


      Chez l'humain et les autres primates la pupille est ronde, mais ce n'est pas le cas de toutes les espèces du règne animal. Chez les félidés et les crocodiliens, par exemple, elles sont orientées verticalement, alors que chez les caprinés elles sont orientées horizontalement, et on trouve même chez certains poissons-chats (Locariidés) des pupilles de forme annulaire (iris oméga). Ces différences s'expliquent par de nombreux facteurs, mais résultent avant tout d'adaptations évolutives de chaque espèce.

      Voici un exemple de pupilles de chats.

      Pupille mobile Sans titre 2.jpg

      ;</div></span></div><br/>)
    • Equilibre d'une règle et d'un marteau  + (Le centre de gravité (CdG), appelé G, est Le centre de gravité (CdG), appelé G, est le point d'application de la résultante des forces de gravité (la pesanteur). Notre système règle + élastique + marteau est soumis à 2 forces extérieures : son poids qui s'applique à son centre de gravité et la force de réaction de la table qui s'applique au point de contact de la règle avec la table. Pour que le système soit stable, il faut que ces 2 forces soient égales et opposées. Le centre de gravité se positionne naturellement sous le point de sustentation (point de contact avec la table), exactement comme un pendule ou un fil à plomb se stabilise lorsqu'il est à la verticale de son point de sustentation. https://fr.wikipedia.org/wiki/Centre_d%27inertie//fr.wikipedia.org/wiki/Centre_d%27inertie)
    • Gramophone  + (Le disque étant gravé, le fait de placer lLe disque étant gravé, le fait de placer l'aiguille sur le disque qui tourne crée une vibration dans l'aiguille ce qui fait que des ondes sonores se propagent (en l'occurrence de la musique). Le cône permet d'amplifier les ondes sonores, on peut ainsi les entendre. Il n'est pas possible de reproduire cette expérience sur les compact disc (CD) bien que de la musique soit gravée dessus. Il est nécessaire d'utiliser un lecteur optique et non un lecteur avec une aiguille comme tête de lecture.r avec une aiguille comme tête de lecture.)
    • Drôle d'air dans mes poumons  + (Les poussières microscopiques présentes daLes poussières microscopiques présentes dans l’air sous forme solide, liquide ou gazeuse (substances chimiques, micro-organismes, pollens, gaz...) sont en général rejetées par l’organisme. Mais certaines d’entre elles arrivent parfois à pénétrer dans les poumons ou à l’intérieur du corps, ce qui peut avoir des conséquences sur la santé. Ainsi certaines maladies moins fréquentes il y a quelques décennies (allergie, asthme...) se sont développées avec l’accroissement des pollutions (industrielles, agricoles, domestiques) liées aux produits de synthèse qui nous entourent (pesticides, produits d’entretien, colles, plastiques...), ces derniers contenant des matières parfois dangereuses pour l’environnement et la santé. Une courte exposition à fortes doses à un ou plusieurs polluants peut entraîner des irritations, des nausées, des intoxications... Une exposition longue durée à faible dose à certaines substances peut quant à elle entraîner des allergies ou des maladies respiratoires (asthme...), voire dans les cas les plus sévères des troubles neurologiques, hormonaux (problèmes de fertilité, d'obésité) ou des risques de cancers. L’influence du tabac : la fumée de cigarette est constituée multitudes de microparticules qui entraînent un dysfonctionnement de l’ensemble respiratoire au fil des années. Les substances nocives et irritantes qu’elle contient diminuent la ventilation, les broches s’obstruent, le tissu pulmonaire perd de son élasticité et diverses pathologies apparaissent : bronchites, infections, asthme, insuffisance respiratoire, voire un cancer.nsuffisance respiratoire, voire un cancer.)
    • Équilibriste  + (On appelle centre de gravité un point théoOn appelle centre de gravité un point théorique sur lequel on peut considérer que la force de gravité s'applique sur les objets (en realité elle s'applique partout sur l'objet, ce point est un point purement théorique utilisé en mécanique newtonienne). La position du centre de gravité d'un objet est dépendante du poids de l'objet, de la répartition du poids dans l'objet et de la forme de l'objet. La gravité terrestre peut se représenter par une flèche qui s'applique au niveau du centre de gravité des objets et se dirige vers le centre de la Terre. (Idem, c'est un concept purement théorique). On appelle surface de sustentation la surface théorique dans laquelle doit passer la flèche de la gravité terrestre qui s'applique sur le centre de gravité de l'objet pour que l'objet tienne en équilibre. (Théorique, encore une fois). Si la flèche qui représente la force de gravité qui s'applique sur ce centre de gravité passe par la surface de sustentation de l'objet, alors l'objet tient en équilibre. Si la flèche passe en dehors de la surface de sustentation, alors l'objet est hors équilibre, il tombe. Dans l'équilibriste, on accroche du poids au niveau du bouchon avec des pics à brochette. C'est une façon de faire passer le centre de gravité en dessous du cure dent. Il est presque impossible de faire tenir un bouchon en équilibre sur un cure dent seul. Plus les bras sont longs, plus le poids situé au niveau des bras est élevé et plus il devient difficile de trouver une position dans laquelle l'objet ne tiendra pas en équilibre. Il est possible de faire une expérience complémentaire avec une chaise et une planche de bois. Poser la planche de bois sur le sol et la chaise par dessus. Le centre de gravité se situe quelque part dans le cube formé par les 4 pieds de la chaise et la surface de sustentation est le carré dessiné au sol par les 4 pieds. Quand on soulève un coté de la chaise on déplace la surface de sustentation. Elle ne coincide plus avec le carré dessiné par les 4 pieds de la chaise. Plus le plan est incliné, plus la surface de sustentation se déplace. La chaise commence a glisser quand la flèche de la gravité qui s'applique au niveau du centre de gravité bascule en dehors de la surface de sustentation.e en dehors de la surface de sustentation.)
    • Chromatographie et capillarité  + (On peut distinguer deux phénomènes différeOn peut distinguer deux phénomènes différents. Le premier est la montée de l'eau qui entraîne les colorants, le second est la séparation des colorants pendant cette montée. Normalement, la gravité terrestre devrait empêcher l'eau de monter le long de la bande et l'eau devrait plutôt avoir tendance à descendre. Cependant il existe le phénomène de capillarité. Ce phénomène physique entre en jeu dès qu'un liquide et une surface se rencontrent. Les molécules du liquide sont plus ou moins fortement attirées selon le liquide et selon la surface en question. Dans un tube en verre, on peut voir que l'eau monte légèrement plus haut sur les bords, la surface du tube attire l'eau par capillarité. Si le tube en verre est assez fin, il fera monter de l'eau jusqu'à ce que la gravité compense cette attraction par capillarité. Ici, le papier filtre attire l'eau par ce même phénomène et la fait monter. En montant, l'eau entraîne le point coloré avec elle. Le deuxième phénomène est celui qui décompose la séparation des couleurs. Pourquoi les colorants se séparent-ils lors de leur montée? C'est tout simplement parce que tous les colorants n'ont pas la même composition, et que par conséquent ils ne réagissent pas de la même manière. Ainsi les colorants monteront à une vitesse et à une hauteur qui dépendront non seulement de leur réaction avec le papier, mais aussi de leur solubilité dans l'eau. Voilà pourquoi ils se séparent. C'est la chromatographie. Il existe de nombreuses techniques de chromatographie, et leurs applications sont multiples en chimie analytique, en médecine, dans l'industrie ou encore la police scientifique. On peut utiliser ce procédé pour connaître la composition d'un produit inconnu, ou pour rechercher la présence et mesurer la quantité d'une substance dissoute dans une autre. La chromatographie permet par exemple de déterminer la quantité de caféine contenue dans un médicament, de savoir quels acides aminés sont présents dans un aliment, de rechercher des traces d'hydrocarbures dans l'eau d'une zone de baignade ou de prouver si la peinture trouvée sur une scène de crime est la même que celle de la voiture d'un suspect.même que celle de la voiture d'un suspect.)
    • Couleur du métal chauffé  + (Pourquoi telle couleur est associée à tellPourquoi telle couleur est associée à telle température? L'augmentation de la température crée une agitation des atomes, ils se choquent les uns les autres et cela excite leurs électrons : dans certains cas, un électron récupère de l'énergie venant du choc. Ensuite, l'électron reperd cette énergie, en émettant un photon. Plus la température est élevée, plus le mouvement est puissant, plus l'énergie des chocs est grande, et plus les électrons sont excités. Donc l'énergie lumineuse augmente avec la température. Or la couleur d'un photon correspond à son énergie. Un photon infra-rouge (IR) a moins d'énergie qu'un photon rouge, qui en a moins qu'un jaune, qui en a moins qu'un bleu, qui en a moins qu'un ultra-violet... À température ambiante, les photons émis sont infra-rouges et invisibles. En augmentant la température, un mélange de photons IR et de photons rouges commence à être émis (cas du fer porté "au rouge"), puis en montant encore on obtient un mélange IR/rouge/jaune (on voit une couleur orangée), puis un mélange de tout le spectre visible (on voit du blanc), puis un mélange vu comme bleu, etc. On peut associer le phénomène du métal chauffé à l'observation des astres. On peut en effet déterminer la température des étoiles dont on connaît la couleur. Par exemple une étoile bleue comme Rigel a une température de surface de 20000°C.l a une température de surface de 20000°C.)
    • Planète bleue  + (Sur les 23 parts de gâteaux pour les océanSur les 23 parts de gâteaux pour les océans : - 10 parts seraient pour l’océan Pacifique qui est le plus grand avec 165 millions de km2. Il est plus grand que tous les continents rassemblés! - 6 parts pour l’océan Atlantique avec 106 millions de km2 - 5 parts pour l’océan Indien avec 74 millions de km2 - 1 part pour l’océan Antarctique avec 20 millions de km2 - 1 part pour l’océan Arctique avec 14 millions de km2
      an Arctique avec 14 millions de km2 <br/>)
    • Coca + Mentos égal Geyser  + (ça marche avec n'importe quelle boisson gaça marche avec n'importe quelle boisson gazeuze, y compris l'eau pétillante. la substance ajoutée (le mentos) doit juste avoir une surface pleine de micro-aspérités. Du sucre ou du sel en poudre donnent aussi le même résultat (l'intensité dépendant de la quantité ajoutée, elle peut varier d'une expérience à l'autre). D'autres bonbons sucrés donnent un résultat souvent moins spectaculaire ( un résultat souvent moins spectaculaire ()
    • Carillon électrostatique  + (• Comme dit précédemment, la paille est ch• Comme dit précédemment, la paille est chargée négativement. Lorsqu'on approche celle-ci du côté d'une plaque, celui-ci va se charger positivement, les charges négatives se repoussant entre elles. Ces dernières vont donc se retrouver de l'autre côté de la plaque (le côté avec l'aluminium). L'influence de la première plaque sur la boule va reproduire le même phénomène sur celle-ci qui elle-même va le reproduire sur la seconde plaque avec tout de même moins de charges. L'attraction étant plus puissante vers la première plaque, grâce à la quantité de charges plus importante, la boule s'y dirige.

      Carillon electrostatique Carillon1.jpg



      • Lors du contact de la boule chargée positivement et de la plaque chargée négativement, il y a un transfert de charges du fait que les deux forment un seul conducteur : la boule devient chargée négativement. Elle est ensuite attirée de la même manière vers la seconde plaque pour y subir le même phénomène, et sa charge change de signe. Cela se reproduit tant que les charges des plaques sont assez fortes et différentes pour attirer la boule.


      Carillon electrostatique Carillon2.jpg

      Carillon electrostatique Carillon3.jpg



      • Enfin, lorsque l'on retire la paille, la première plaque répartit ses charges positives sur toute sa surface, ce qui a pour effet d'attirer à nouveau la boule, pour qu'elle puisse faire encore quelques allers-retours jusqu'à atteindre un équilibre.

      Carillon electrostatique Carillon4.jpg

      )
    • Réparation électronique  + (<nowiki>==Remplacement de composants==Remplacement de composants==

      ===Souder===
      https://fr.ifixit.com/Tutoriel/Comment+souder+et+dessouder+des+connexions/750

      On appuie le fer à souder sur la carte et contre le contact métallique du composant.

      Puis on ajoute/aspire l'étain, puis on enlève le fer '''dès que l'étain fond !'''

      '''''2-3 secondes suffisent en général !'''''

      '''''Le fer à souder l'est pas un pinceau !'''''

      Il chauffe les parties métalliques, et l'étain vient s'installer directement entre elles !

      ===Changer un fusible===
      Avant tout on s'assurera d'avoir trouvé et réglé la cause du court-circuit qui a fait cramer de fusible.

      On n'en a pas une quantité infinie, et on évite d'en cramer pour rien !

      Ensuite, il est important de remplacer un fusible mort par le modèle d'origine, ou à caractéristiques égales.

      En général ils seront en 250V, ensuite le courant (A) doit être le même, et enfin le type aussi doit correspondre (type F pour ''fast'', type T pour ''temporisé).''

      Ça donnera par exemple T250V2.5A, F250V1.25A, etc.

      ===Commander des composants===
      ====Fournisseurs généralistes====

      =====Préféré : https://fr.rs-online.com=====
        Site pro avec moteur de recherche efficace. Les références RS sont utilisables sur :

      https://rs-particuliers.com qui proposer la livraison gratuite pour les commandes passées le week-end.

       Autres : https://mouser.fr , https://fr.farnell.com , https://digikey.fr , https://conrad.fr, https://tme.eu
      ====Fournisseurs spécifiques====
        Composants moins chers, livraison plus longues.

        https://musikding.de

        https://taydaelectronics.com


      Fournisseurs de composants et autres de seconde main

      https://dsmcz.com

      ====Fournisseurs risqués (clones ratés..)====
      Aliexpress, alibaba, ebay, ...

      ===Commander des outils===
      Fournisseur européen avec livraison rapide, mais pas cher !

      https://eleshop.fr/

      ==Petit entretien==
      https://sonelec-musique.com/electronique_bases_nettoyage.html

      ===Potentiomètre bruyant===
      ''(Dans les enceintes / le casque bien sûr)''

      La bombe nettoyante et lubrifiante sert à décoller la poussière des potentiomètres. Il y en a besoin sur un potard quand, si tu le tournes, il génère du bruit dans l'écoute (enceintes/casque). Si c'est le cas :  débrancher la machine Pour les faders/linéaires, t'en mets dans la fente, pour les rotatifs, faut démonter la machine pour pouvoir en mettre dans le ptit trou prévu à cet effet à l'arrière du potar. Ensuite tu laisses agir 30sec puis tu lui fais faire des allers-retours pendant 30sec t'attends encore 2min que ça sèche tu rebranches et testes si ça marche pas tu reprends tout depuis le début.  

      PS : dans des cas extrêmes les pistes peuvent êtres poncées ou fêlées. On doit alors remplacer le potar par un même modèle. Il en existe plein. Si tu sais pas le reconnaître : soit tu trouve un Service Manual de la machine, et tu retrouves la pièce exacte, soit, si tu sais pas trouver par toi même, t'appelle un spécialiste ; c'est rare qu'un potar proche fasse bien marcher la machine.

      ===Boutons carbonés===
      ''Claviers, synthés, télécommandes, manettes, jouets, etc., peuvent avoir des boutons'' qui ''dysfonctionnent,''

      2 possibilités :

      - la plus simple, avec un coton-tige (éventuellement  imbibé d'alcool isopropylique), caresser les contacts carbonés sur le circuit et sous les coupelles en caoutchouc (possible que ce soit juste de la poussière).

      Après toute opération, on replacera la coupelle en la plaquant pour qu'elle empêche la poussière de rentrer.

      - si ça ne change rien :

      La solution ''DIY'' : la bombe ''Graphit 33'' (ou autre source de carbone en solution collante). En mettre un peu dans un petit bouchon, tamponner un coton-tige dans le bouchon pour récolter du produit, tamponner délicatement le produit sur les contacts carbonés situés sous les coupelles en caoutchouc ayant été repérées comme défectueuses.

      Laisser sécher 20min ou plus (vérifier la notice du produit).

      Issue de secours, si ce n'est pas convaincant, on peut trouver les bandes de contacts en caoutchouc (qui contiennent les fameuses coupelles) chez des fournisseurs spécialisés.

      ===Encodeur (roue codeuse, rotatif infini)===
      Tenter d'enchainer les nettoyages à l'alcool iso-propylique (ou au nettoyant contact, ou au netroyant contact lubridiant selon le type.d). Si ça ne suffit pas, tenter de le remplacer sans rien casser... souvent les pattes sont rentrées un peu en force et ça fait qu'on a tendance à chauffer trop longtemps et arracher les trous métallisés, ce qui fait fondre le lien entre les parties métalliques et le sunstrat plastique du circuit...
      )
    • Un coup de pouce pour la biodiversité  + (<nowiki><u>'''Quelques exemple'''Quelques exemples de dispositifs et mesures'''

      '''*Champs/ zones agricoles''' :

      - replanter/entretenir des haies, créer talus et fossés,

      - favoriser les petites parcelles agricoles

      - utiliser le couvert végétal en dehors des périodes de culture pour ne pas laisser des terres à nu (plantes qui limitent le ruissellement et pompes les nitrates : moutarde, phacélie...)


      '''*Rivières et zones humides'''

      - restaurer/recréer/protéger des zones humides,

      - laisser les berges et fonds de rivière dans leur état naturel (ex : maintenir les zones de graviers pour la ponte des truites et autres espèces, les zones ombragées, favoriser la diversité des profondeurs, courants, la présence de méandres...)

      - installer un crapauduc # sous la route pour permettre aux crapauds de migrer d’une zone humide à l’autre


      * '''Bois et chemins de campagne'''

      - maintenir/ ne pas bétonner ou remplacer par des routes les chemins de terre qui circulent entre les champs et les bois, (couplage possible avec dessous)

      - interdire la circulation de voitures et motos sur ces voies (qui servent aussi aux tracteurs) (vignette panneaux interdiction circulation)

      - installer des grillages le long des routes traversant les bois pour éviter les traversées des animaux sauvages et les accidents, les orienter jusqu’aux ponts, tunnels et passerelles adaptés


      * '''Jardins partagés et jardins privés (dont potagers)''' :

      - laisser un tas de végétaux /de bois avec ouvertures pour hérissons et autres petits mammifères,

      - limiter le nombre de tontes de pelouses,

      - laisser des zones en friche (jamais tondues pour favoriser l'installation des plantes et attirer les pollinisateurs),

      - ne pas tailler les haies et buissons entre mars et août (période de nidification des oiseaux),

      - installer des hôtels à insectes, mangeoires et nichoirs (pour oiseaux et petits animaux), montrer des exemples de dispositifs « faits maison » avec du matériel récupéré,

      - installer/entretenir une petite mare

      - planter des espèces locales de fleurs riches en nectar/pollen pour attirer les pollinisateurs (citer des exemples ! Romarin, lavande, ciboulette...)

      - potager : planter variétés locales et espèces sauvages auxiliaires (limitent l’usage de phytosanitaires, repoussent les parasites ou attirent des insectes qui les éliminent)

      - utiliser la lutte biologique (ex : larves coccinelles qui mangent pucerons)

      - utiliser du couvert végétal (paillage)

      - utiliser des engrais et traitements naturels (compost, purin d’ortie…) plutôt que des produits phytosanitaires

      - sensibiliser le public à l’observation des espèces, animer des projets de sciences participatives, des ateliers de jardinage sans phytosanitaires, de fabrication de mangeoires** et nichoirs avec du matériel de récupération...


      ''**N.B : les ornithologues, scientifiques ou amateurs passionnés, sont actuellement très partagés au sujet des périodes auxquelles les mangeoires à oiseaux peuvent être utiles aux espèces. Une partie de la communauté ornithologique pense qu'il faut fournir de la nourriture aux oiseaux seulement en période hivernale, lorsque les sources de nourriture se raréfient, et qu'étendre le nourrissage au delà de cette période risque de perturber l'instinct des oiseaux, leur capacité à trouver de la nourriture ou leurs migrations. L'autre parrie de la communauté pense au contraire que fournir toute l'année de la nourriture aux oiseaux dans des mangeoires contribue à limiter les effets de la disparition rapide des sources de nourriture et d'abris pour les oiseaux, et à maintenir une plus grande diversité d'espèces dans les zones où elles sont les plus vulnérables (dans certains pays, le nourrissage est recommandé toute l'année). En France, à ce jour, cette question fait encore débat parmi les spécialistes et les passionnés, et il n'est pas possible d'affirmer avec certitude s'il vaut mieux garnir les mangeoires uniquement en hiver ou toute l'année.''


      '''* Centre-ville :'''

      - favoriser les murets de pierre et les espèces de rocaille, pavés végétalisés, ne plus désherber ou utiliser des techniques sans produits polluants (désherbage thermique)


      '''* Littoral :'''

      - ne pas ramasser la laisse de mer sur l’estran

      - sensibiliser le public aux bonnes pratiques de pêche à pied (tailles minimales de capture, retournement des blocs, outils de pêche non destructeurs…)

      - dunes : créer des sentiers protégés et installer des ganivelles ou des cordons pour éviter le piétinement.
      lt;br /><br /><br />'''* Littoral :'''<br /><br />- ne pas ramasser la laisse de mer sur l’estran<br /><br />- sensibiliser le public aux bonnes pratiques de pêche à pied (tailles minimales de capture, retournement des blocs, outils de pêche non destructeurs…)<br /><br />- dunes : créer des sentiers protégés et installer des ganivelles ou des cordons pour éviter le piétinement.</nowiki>)
    • La machine à vapeur  + (<nowiki>Dans la cocotte, l'eau en chDans la cocotte, l'eau en chauffant passe d'un état liquide à un état gazeux et occupe '''plus de volume''' qu'à l'état liquide.

      A l'état gazeux l'eau est '''compressible''' tout comme quand elle est dans un état liquide.


      L'eau à l'état gazeux est compressée dans la cocotte, car elle occupe plus de volume. La pression devient plus importante à l'intérieur qu'à l'extérieur de la cocotte. Au moment où l'on ouvre la soupape de la cocotte on crée une '''dépression'''. C'est à dire que la pression à l'intérieur de la coquotte (produite par la vapeur) tend à s'équilibrer avec la pression de l'air à l'extérieur de la cocotte. On peut dire aussi, que '''la pression diminue à l'intérieur de la cocotte.'''

      Mais comme le volume d'air qui nous entoure est beaucoup plus important que le volume d'air dans la cocotte, on considère que l'intérieur revient à l'équilibre avec la pression atmosphérique au bout d'un certain temps.


      Mais revenons à nos moutons ! Lorsque l'on ouvre la soupape, les fluides rentrent en mouvement pour que la pression s'équilibre. Ce mouvement de fluide (la vapeur d'eau qui sort de la cocotte) allant en contact avec la pal de l'hélice va créer une pression de surface sur la pale. Cette pale va indirectement transmettre les efforts à l'arbre moteur qu'elle va faire entrer en rotation.




      *Que se passe t-il dans un moteur électrique à courant continue'''**''' (à aimant permanent) ?


      ** Qu'on appelle aussi dynamo ou encore alternateur




      Le moteur à courant continue se compose d'un aimant permanent, '''le stator''' (c'est la partie fixe, statique du moteur). Ce stator avec ses deux pôles entoure une partie mobile, l'arbre moteur aussi appelé le '''rotor''' (c'est la partie qui est en rotation). Ce rotor est composé de plusieurs '''bobinages''' (par exemple du fil de cuivre).

      *les aimants créent un champs magnétique dans les bobines, qui, lorsqu'elles sont en rotation, provoquent un déplacement d''''électrons''' libres dans le fil. '''C'est ce qu'on appelle : ''de l'électricité.'''''
      créent un champs magnétique dans les bobines, qui, lorsqu'elles sont en rotation, provoquent un déplacement d''''électrons''' libres dans le fil. '''C'est ce qu'on appelle : ''de l'électricité.'''''</nowiki>)
    • AMP ou pas (Jeu sur les Aires Marines Protégées)  + ('''<u>Aires Marines Protégés, un pro'''Aires Marines Protégés, un problème de définition ?''' Afin d’assurer leur rôle dans la pêche durable, assurant prospérité durable des écosystèmes marins et des pêcheur.euses la communauté scientifique et les ONG insiste sur la définition claire, ce qui n’est aujourd’hui pas vraiment le cas, en France du moins. L’UICN en 2008 définissait une Aire protégé au sens large comme : « un espace géographique clairement défini, reconnu, dédié et géré, par des moyens légaux ou d'autres moyens efficaces, afin d'assurer la conservation à long terme de la nature avec les services écosystémiques et les valeurs culturelles associés. » Au congrés mondial pour la nature d'Hawaii 2016 qui a réuni près de 10 000 participants (Des décideur.euses, des membres de la société civile, du secteur privé, du milieu universitaire, de peuples autochtones, etc.), l’UICN a recommandé à l’ensemble des États de protéger 30% des océans et précise que la pêche industrielle ne devrait pas avoir lieu dans ces aires marines protégées. (https://whc.unesco.org/fr/actualites/1563, BLOOM) Pendant ce temps, dans le droit français, est reconnue comme une « aire marine protégée », un espace géographique sur lequel s’applique un des outils de protection listé dans l’article L334-1 du Code de l’environnement (https://www.milieumarinfrance.fr/Nos-rubriques/Cadre-reglementaire/Aires-marines-protegees). Il en résulte 18 catégories française d’AMP se référant à divers textes de lois (Code de l’environnement, le Code rural et de la pêche maritime, des conventions internationales, les Codes de l'environnement des territoires d’outre mer, etc.). Cette conception très modulable va à l’encontre des définitionsception très modulable va à l’encontre des définitions)
    • Piéger la faune du sol  + ('''Chaque espèce est importante car chacun'''Chaque espèce est importante car chacune joue un rôle dans le fonctionnement du sol'''. Certaines espèces '''décomposent la matière organique''' (=les végétaux et les animaux morts), d’autres servent à '''aérer le sol''' en y creusant des galeries par exemple, d’autres encore peuvent aider à la '''dissémination des graines'''... Chaque animal a un rôle très important, même les araignées et les limaces ! ''Pour reprendre l’exemple des collemboles, ils ne servent pas que d’indicateurs pour la santé du sol, ils servent aussi à la décomposition des végétaux. Les cloportes, tout comme les bactéries, les champignons, les vers de terre et bien d’autres décomposent également les végétaux en mangeant leurs débris. C’est ce qui permet la fabrication de l’'''humus''', la couche supérieure du sol.'' D’autres animaux en aérant le sol, permettent à l’eau de s’infiltrer dedans, comme les fourmis qui y creusent leur fourmilière ou les vers de terre avec leurs galeries. Les petites bêtes, comme on les nomme familièrement, sont aussi la base alimentaire de nombreux autres animaux, comme certains mammifères ou les oiseaux (les insectes sont très importants pour la bonne croissance de beaucoup d'oisillons !).
      ssance de beaucoup d'oisillons !). <br/>)
    • Laver de l'eau  + (- Pour mieux comprendre ce phénomène de ca- Pour mieux comprendre ce phénomène de capilarité on peux aussi réaliser une expérience avec des tubes à essai pour l'observer sous une autre approche. http://pourquoicomment.over-blog.com/2016/12/pourquoi-le-papier-essuie-tout-absorbe-t-il-aussi-bien-les-liquides.html-absorbe-t-il-aussi-bien-les-liquides.html)
    • Memory Dinosaures  + (A la fin du memory, faire un point avec les enfants sur les différents dinosaures et répondre à leurs questions. Au fur et à mesure de l'avancée du jeu, les enfants se souviendront des cartes déjà retournées et peuvent associer les paires)
    • Terre Salée  + (Ainsi, l’arbre est un être vivant tout comAinsi, l’arbre est un être vivant tout comme nous, et pour se nourrir, il le fait grâce à ses racines. Celles-ci possèdent d’innombrables petits poils appelés poils absorbants. Ainsi une plus grande surface est en contact avec l’eau du sol, ce qui facilite les échanges. Toutes ces racines lui permettent plusieurs fonctions: *Elles absorbent l’eau et les substances nutritives contenues dans le sol, pour constituer la sève brute, le “sang” vital de l’arbre *Elle stockent des ressources énergétiques pendant la saison hivernale, cela permet la survie au ralenti de l’arbre *Elle lui assurent un ancrage solide dans le sol, pour lui permettre de résister aux intempéries Elles sont enfin le siège d’association avec d’autres organismes vivants présents dans le sol(champignons, bactéries), ce genre d'association est appelée une symbiose et n'est pas indispensable à la vie de l'arbre mais lui offre des opportunité de mieux se nourrir.
      des opportunité de mieux se nourrir.<br/>)
    • Chandelle fait monter l'eau  + (Ce phénomène fait intervenir la loi des gaCe phénomène fait intervenir la loi des gaz parfaits, PV=nRT, avec : *P : la [https://fr.wikipedia.org/wiki/Pression pression] (Pa), *V : le [https://fr.wikipedia.org/wiki/Volume volume] du gaz (m3), *n : la [https://fr.wikipedia.org/wiki/Quantit%C3%A9_de_mati%C3%A8re quantité de matière] (mol), *R : la [https://fr.wikipedia.org/wiki/Constante_universelle_des_gaz_parfaits constante universelle des gaz parfaits] (≈ 8,314 J·K-1·mol-1), *T : la [https://fr.wikipedia.org/wiki/Temp%C3%A9rature_absolue température absolue] (K). Dans notre cas, la quantité de mol (n) et la constante (R), ne varient pas. Dans un premier temps la température augmente, la production de gaz fait varier son volume mais vu que le verre garde le même volume, la pression augmente un petit peu. Puis lorsque la flamme s’éteint la température diminue et la rétraction de l'air devenu froid, fait diminuer le volume d'air et sous l'effet de la pression, l'eau est aspirée dans le verre et une fois l'eau dans le verre la pression redevient normal.ée dans le verre et une fois l'eau dans le verre la pression redevient normal.)
    • Ça n'a pas l'air lourd  + (Cependant, quelques questions se posent : Cependant, quelques questions se posent : *Comment se fait-t-il que lorsqu'on lance un ballon gonflé et un ballon dégonflé en l'air, celui dégonflé retombe en premier tandis que celui gonflé tend à rester en l'air ? Certains parlent de [https://fr.vikidia.org/wiki/Pouss%C3%A9e_d%27Archim%C3%A8de poussée d'Archimède], vous savez, cette force qui fait remonter un objet à la surface lorsqu'on le plonge dan l'eau. Et bien elle ne s'applique pas ici car la différence de pression est négligeable dans ce cas là. En fait, il s'agit là d'une expérience différente de celle avec la balance, puisque ici, le ballon est soumis à son propre poids ET aux frottements de l'air sur la surface du ballon.
      *Qu'est-ce que le frottement de l'air ? C'est cette force qui s'oppose à votre main et l’envoie en arrière lorsque l'on met sa main à travers la fenêtre de la voiture. Ou encore quand vous faites du vélo, il y a beaucoup de vent sur votre visage mais pas que, il y a aussi le frottement de l'air. Ce frottement est plus important si l'on met sa main à travers la fenêtre plutôt que son doigt. Et le frottement est aussi plus important si l' on va vite. En fait, plus l'objet est gros et plus on va vite, plus il y a de frottements. Or le ballon gonflé a une certaine taille, à coup sûr plus importante que le ballon dégonflé, c'est-à-dire que le ballon gonflé a une plus grande surface que le ballon dégonflé. C'est pour cela que le ballon gonflé flotte plus longtemps dans l'air, cela est dû aux frottements de l'air. Ici, avec la balance, il n'y a donc pas de poussée d'Archimède comme dit précédemment et de plus, il n'y pas de frottements car la vitesse est bien trop faible. Le seul facteur ici est donc le poids des ballons, ce poids même qui est plus important, l'air a donc bien une masse. Pour en lire plus : voici un article wikipédia qui explique les propriétés de l'[http://fr.wikipedia.org/wiki/Air Air]
      étés de l'[http://fr.wikipedia.org/wiki/Air Air])
    • Aspirateur à bestioles  + (Chaque espèce est importante car chacune jChaque espèce est importante car chacune joue un rôle dans le fonctionnement du sol. Certaines espèces décomposent la matière organique (=les végétaux et les animaux morts), d’autres servent à aérer le sol en y creusant des galeries par exemple, d’autres encore peuvent aider à la dissémination des graines... Chaque animal a un rôle très important, même les araignées et les limaces ! Par exemple les collemboles, les cloportes, tout comme les bactéries, les champignons, les vers de terre et bien d’autres décomposent les végétaux en mangeant leurs débris. C’est ce qui permet la fabrication de l’humus, la couche supérieure du sol. D’autres animaux en aérant le sol, permettent à l’eau de s’infiltrer dedans, comme les fourmis qui y creusent leur fourmilière ou les vers de terre avec leurs galeries. Les petites bêtes, comme on les nomme familièrement, sont aussi la base alimentaire de nombreux autres animaux, comme certains mammifères ou les oiseaux (les insectes sont très importants pour la bonne croissance de beaucoup d'oisillons !).
      issance de beaucoup d'oisillons !). <br/>)
    • Observer la faune d'un bloc de sol  + (Chaque espèce est importante car chacune jChaque espèce est importante car chacune joue un rôle dans le fonctionnement du sol. Certaines espèces décomposent la matière organique (=les végétaux et les animaux morts), d’autres servent à aérer le sol en y creusant des galeries par exemple, d’autres encore peuvent aider à la dissémination des graines... Chaque animal a un rôle très important, même les araignées et les limaces ! ''Pour reprendre l’exemple des collemboles, ils ne servent pas que d’indicateurs pour la santé du sol, ils servent aussi à la décomposition des végétaux.'' Les cloportes, tout comme les bactéries, les champignons, les vers de terre et bien d’autres décomposent également les végétaux en mangeant leurs débris. C’est ce qui permet la fabrication de l’humus, la couche supérieure du sol. D’autres animaux en aérant le sol, permettent à l’eau de s’infiltrer dedans, comme les fourmis qui y creusent leur fourmilière ou les vers de terre avec leurs galeries. Les petites bêtes, comme on les nomme familièrement, sont aussi la base alimentaire de nombreux autres animaux, comme certains mammifères ou les oiseaux (les insectes sont très importants pour la bonne croissance de beaucoup d'oisillons !).nne croissance de beaucoup d'oisillons !).)
    • Indices biologiques de qualité de l'eau  + (C’est en se basant sur ce constat que les C’est en se basant sur ce constat que les scientifiques ont bâti des indices biologiques. Ils répondent à des normes (cahier des charges précis) et permettent de comparer les résultats en minimisant au maximum les effets liés à la personne qui réalise l’observation, à l’hydroécorégion, etc. Les différents indices permettent d’appréhender le « bon état écologique » des eaux de surface4. Ces indices ne permettent toutefois que de faire un diagnostic de l’état de dégradation de la biodiversité des milieux aquatiques, en mesurant les effets à relativement long terme de pressions chroniques. Ils permettent, par l’ampleur des effets sur l’abondance et la richesse, de quantifier l’intensité de cette pression. Par le maillage territorial, ils permettent d’identifier approximativement la localisation de cette pression. Cependant, d’autres outils sont nécessaires pour parvenir à anticiper, ou tout du moins à agir précocement, dès que les premiers effets d’une perturbation sont mesurables. Pour cela, des indicateurs à l’échelle moléculaire (expression des gènes) ou physiologique (modification de la reproduction par exemple) sont en cours de développement. Les différents groupes utilisés sont les suivants5 : *Les diatomées (algues qui présentent une enveloppe externe en silice (sable), avec l’indice IBD20076 ; *Les macrophytes (plantes aquatiques visibles à l’œil nue), avec l’indice IBMR7 ; *Les poissons, avec l’indice IPR+8 ; *Les macro-invertébrés, avec l’indice I2M29. Ces différents indices servent en routine et sont utilisés dans toutes l’Europe.b>M<sub>2</sub><sup>9</sup>. Ces différents indices servent en routine et sont utilisés dans toutes l’Europe.)
    • La diversité spécifique, l'assurance de la fonctionnalité  + (Dans les écosystèmes, les espèces peuvent Dans les écosystèmes, les espèces peuvent être regroupées par traits fonctionnels. Par exemple, pour des plantes, on peut regrouper l’ensemble des espèces ayant le même type racinaire au sein d’un premier trait, puis regrouper les espèces ayant des surfaces de feuilles équivalentes au sein d’un deuxième trait, etc. Pour les macro-invertébrés, un trait peut être le régime alimentaire, comme nous l’avons vu dans cette fiche. Un insecte (Plécoptère) et un crustacé (Gammare) peuvent être présents dans le même groupe (déchiqueteur par exemple) pour cette caractéristique. Un autre trait peut être l’habitat utilisé (végétaux, cailloux, sable…). Le plécoptère et le gammare peuvent différer de ce point de vue là, le premier vivant plutôt sur des cailloux, le second dans les végétaux. Ils mangent donc la même chose, mais pas au même endroit dans la rivière ! La même espèce peut être regroupée avec des espèces différentes dans des traits différents, en fonction de la caractéristique de celle-ci qui sera considérée. Une fois les traits renseignés pour les différentes espèces, il est possible d’avoir une image des différents processus ayant lieu dans un écosystème, comme la capacité à dégrader la litière (les feuilles mortes des arbres), la capacité d’une prairie à aller chercher les éléments nutritifs en profondeur, etc. Cette pratique scientifique se nomme l’écologie fonctionnelle. Ici, deux notions entrent en jeu : - La '''diversité spécifique''' représente le nombre d’espèces présentes dans un milieu donné ; - La '''diversité fonctionnelle''' peut être définie comme la diversité des traits fonctionnels, ces traits étant des composantes du phénotype des organismes qui influencent des processus écosystémiques. Dans un écosystème, les espèces vont assurer des fonctions qui sont similaires (par exemple plusieurs espèces dégradent la litière) mais chaque espèce va réaliser cette fonction de façon un peu différente. Plus la diversité spécifique est importante et plus la diversité fonctionnelle l’est aussi, plus les processus sont stables et pérennes. Lorsqu'advient une perturbation, certaines espèces seront capables d’y faire face et si certaines disparaissent, la redondance fonctionnelle fait que les processus vont pouvoir continuer à avoir lieu. Ce phénomène constitue donc aussi, entre autres, le moteur de la résilience des écosystèmes. Dans les écosystèmes peu diversifiés, la moindre perturbation peut avoir des conséquences importantes sur les processus écosystémiques.ortantes sur les processus écosystémiques.)
    • Fabriquer une catapulte  +
    • A quoi servent les fleurs  + (Dans un écosystème, chaque espèce va interDans un écosystème, chaque espèce va interagir avec d’autres espèces et donc, est amenée à aider et à servir ces autres espèces. En se nourrissant de nectar, les insectes pollinisateurs contribuent inconsciemment à la sauvegarde de la planète, permettant la fabrication de nombreux fruits et légumes indispensables à la survie de nombreuses espèces, dont la nôtre.rvie de nombreuses espèces, dont la nôtre.)
    • Cartographie d'un bassin versant  + (De nombreuses activités nécessitent l'accèDe nombreuses activités nécessitent l'accès à l'eau. La découpe d'un territoire en bassins versants permet de lier ces usages et de mettre en évidence leurs relations [1]. Les Schémas d'Aménagement et de Gestion des Eaux (SAGE) ont pour objectif de concilier l'usage de l'eau pour les différentes activités humaines et pour les milieux naturels [2]. Ce sont des outils importants pour l'aménagement d'un territoire et la préservation de ses ressources. Ceux-ci ont pour rôle de réaliser un diagnostic de l'état des eaux sur le territoire, puis de fixer des objectifs et moyens. Pour les piloter, un comité est formé avec de nombreux acteurs et usagers du territoire.nombreux acteurs et usagers du territoire.)
    • Filtration de l'eau  + (En plaçant les filtres les uns à la suite En plaçant les filtres les uns à la suite des autres, on fait passer l'eau dans des espaces de plus en plus fins pour effectuer une filtration mécanique et se débarrasser des débris des plus gros aux plus petits. Ce mécanisme de filtration mécanique peut être complété par une filtration chimique, basée sur le principe de l'adsorption : il s'agit de la fixation de certains éléments chimiques à un matériau solide. Ici cette étape de filtration chimique est réalisée avec du charbon actif, qui capture certains polluants organiques : l'odeur du vinaigre et le colorant sont en partie fixés par la couche de charbon actif. Ajouter un matériau adsorbant permet d'améliorer la filtration car on pourra éliminer plus d'éléments polluants qu'avec la seule filtration mécanique. Plus la couche filtrante est épaisse et plus l'eau mettra du temps à la traverser, donc plus le charbon actif pourra piéger de polluants, et donc mieux l'eau sera nettoyée.
      et donc mieux l'eau sera nettoyée. <br/>)
    • Toupie or not Toupie  + (Il existe de nombreuses formes de toupies,Il existe de nombreuses formes de toupies, mais le principe de base est toujours le même : * une masse équilibrée (centre de gravité sur l'axe de rotation) ; * un grand [https://fr.wikipedia.org/wiki/Moment_d%27inertie moment d'inertie] par rapport à l'axe (masses réparties loin de l'axe) ; * contact [https://fr.wikipedia.org/wiki/Liaison_(m%C3%A9canique) ponctuel] sur l'axe (ou très proche) avec le sol (diminution des effets du frottement) ; * un système de mise en rotation (tige, ficelle...) permet de lancer la toupie. Une fois en rotation, la toupie se comporte comme un [https://fr.wikipedia.org/wiki/Gyroscope gyroscope]. On peut jouer de différentes façons avec une toupie. On peut soit tenir compte de la durée de rotation, soit de la longueur parcourue, soit encore pratiquer le jeu de massacre dont le but est de faire tomber le maximum de quilles[https://fr.wikipedia.org/wiki/Toupie_(jouet)#cite_note-3 a]. Le temps de rotation peut être augmenté en abaissant le centre de masse, en minimisant la friction au niveau de l'embout et en répartissant la masse loin du centre (grand moment d'inertie).e loin du centre (grand moment d'inertie).)
    • Observer et jouer avec un microscope USB  + (Il existe plusieurs 3 types principaux de Il existe plusieurs 3 types principaux de microscopes : === [https://fr.wikipedia.org/wiki/Microscope_optique Microscope optique]. === Cette technique consiste à grossir l'[https://fr.wikipedia.org/wiki/Image_(optique) image optique] d'un objet de petites dimensions en plaçant, entre l'objet et le détecteur, un microscope optique. Cet appareil utilise des [https://fr.wikipedia.org/wiki/Lentille_optique lentilles optiques] pour former l'image en contrôlant le faisceau lumineux et (sur certains microscopes) pour illuminer l'échantillon. Le fait que l'on puisse modifier de nombreux paramètres (type d'éclairage, [https://fr.wikipedia.org/wiki/Polarisation_(optique) polarisation], filtrage spectral, filtrage spatial...) confère de nombreuses possibilités à cette technique d'imagerie ([https://fr.wikipedia.org/wiki/Microscopie_confocale microscopie confocale], [https://fr.wikipedia.org/wiki/Microscopie_%C3%A0_fluorescence microscopie à fluorescence]...) Les meilleurs microscopes optiques sont limités à un [https://fr.wikipedia.org/wiki/Grossissement_optique grossissement] de 2000 fois.
      === [https://fr.wikipedia.org/wiki/Microscope_%C3%A9lectronique Microscope électronique]. === En microscopie électronique l'irradiation de l'échantillon se fait avec un faisceau d'électrons. Les microscopes électroniques utilisent des [https://fr.wikipedia.org/wiki/Lentille_%C3%A9lectrostatique lentilles électrostatiques] et des [https://fr.wikipedia.org/wiki/Lentille_magn%C3%A9tique lentilles magnétiques] pour former l'image en contrôlant le faisceau d'électrons et le faire converger sur un plan particulier par rapport à l'échantillon. Les microscopes électroniques ont un plus grand [https://fr.wikipedia.org/wiki/Pouvoir_de_r%C3%A9solution pouvoir de résolution] que les microscopes optiques et peuvent obtenir des [https://fr.wikipedia.org/wiki/Grossissement_optique grossissements] beaucoup plus élevés allant jusqu'à 2 millions de fois. Les deux types de microscopes, électronique et optique, ont une résolution limite, imposée par la [https://fr.wikipedia.org/wiki/Longueur_d%27onde longueur d'onde] du rayonnement qu'ils utilisent. La résolution et le grossissement plus grands du microscope électronique sont dus au fait que la longueur d'onde d'un électron (longueur d'onde de [https://fr.wikipedia.org/wiki/Louis_de_Broglie de Broglie]) est beaucoup plus petite que celle d'un [https://fr.wikipedia.org/wiki/Photon photon] de lumière visible.
      === [https://fr.wikipedia.org/wiki/Microscopie_%C3%A0_sonde_locale Microscopie à sonde locale]. === Cette technique d'imagerie, plus récente, est assez différente des deux premières puisqu'elle consiste à approcher une sonde (pointe) de la surface d'un objet pour en obtenir les caractéristiques. Les microscopes à sondes locales peuvent déterminer la [https://fr.wikipedia.org/wiki/Topographie topographie] de la surface d'un échantillon ([https://fr.wikipedia.org/wiki/Microscope_%C3%A0_force_atomique microscope à force atomique]) ou encore la [https://fr.wikipedia.org/wiki/Densit%C3%A9_d%27%C3%A9tats_%C3%A9lectroniques densité d'états électroniques] de surfaces conductrices ([https://fr.wikipedia.org/wiki/Microscope_%C3%A0_effet_tunnel microscope à effet tunnel]). Par ailleurs, l'utilisation d'une sonde peut permettre de collecter des [https://fr.wikipedia.org/wiki/Onde_%C3%A9vanescente ondes évanescentes] confinées au voisinage d'une surface ([https://fr.wikipedia.org/wiki/Microscope_optique_en_champ_proche microscope optique en champ proche]). La sonde balaye la surface de l'échantillon à représenter ce qui impose l'observation de surfaces relativement planes. Suivant le microscope utilisé la résolution spatiale peut atteindre l'échelle atomique.
      résolution spatiale peut atteindre l'échelle atomique.)
    • Chute d'une météorite  + (L'accélération de la boule est due à son pL'accélération de la boule est due à son poids et elle est freinée par des frottements dans l'air. Afin d'éviter ces frottements, on privilégie une boule lourde et petite comme la boule de souris utilisée ici. Elle pénètre mieux dans l'air qu'une boule de papier ou de pétanque. Lors de la collision avec les grains dans le pot, elle est brusquement freinée et transfère son énergie cinétique aux grains vers le fond et les côtés. C'est pourquoi des grains sont éjectés et qu'un cratère est formé. Une partie de l'énergie est également dissipée sous forme d'onde acoustique ainsi que dans des vibrations de la matière environnante. Attention, ici on ne reproduit pas totalement la chute d'une météorite sur Terre puisque dans ces cas, elle était généralement complètement désintégrée lors de la collision.lètement désintégrée lors de la collision.)
    • Bouchon sauteur  +
    • Parachute  + (L'air joue un rôle majeur dans la chute dL'air joue un rôle majeur dans la chute du parachutiste, car lorsque le carré du sac en plastique est noué avec le troisième fil, notre parachute tombe avec une tès grande vitesse tout comme n'importe quel objet qui est en chute libre dans le vide étant donné que l’air s’oppose beaucoup moins à sa chute alors qu'étant dénoué, l’air s'engouffre dans la voilure (carré du sac) et impose une forte résistance procurant une force vers le haut d'où le freinage de la chute; le parachute descend donc moins vite ce qui empêcherait l'objet de se détruire ou l'homme de se bléssé.et de se détruire ou l'homme de se bléssé.)
    • Bulle d'huile  + (La '''densité''' des liquides est mesurée La '''densité''' des liquides est mesurée par rapport à celle de l'eau, dont la valeur est 1. L'huile a une densité d'environ 0.9, elle est donc moins dense que l'eau. L'alcool (éthanol) a une densité encore plus faible qui est égale à environ 0.79. Dans l'expérience, lorsque nous ajoutons l'alcool dans le verre, l'huile reste dans la boîte car elle a une densité plus importante que celle de l'alcool. En effet, c'est le liquide le moins '''dense''' (donc le plus "léger") qui est en contact avec la surface. Par la suite nous ajoutons de l'eau à l'alcool. On peut remarquer que l'eau et l'alcool se mélangent car ils sont parfaitement '''miscibles''', ce qui n'est pas le cas avec l'huile. Au fur et à mesure de l'augmentation de la part d'eau dans le mélange, celui-ci voit sa densité augmenter. Au bout d'un moment, la densité de l'huile et celle du mélange s'équilibrent. L'huile n'est donc plus retenue dans la boîte et "flotte" dans le mélange, sous la forme d'une bulle. L'huile est soumise à deux forces, '''l'attraction terrestre''' et '''la poussée d'Archimède''' exercée par le mélange. Ces deux forces s'équilibrent et font donc "flotter" l'huile. L'huile ne se mélange pas avec l'eau car ses molécules sont composées d'une queue '''hydrophile''' (qui est attirée par l'eau) et d'une tête '''hydrophobe''' (qui rejette l'eau). La partie hydrophobe va donc fuir l'eau. L'huile prend une forme en boule car elle est entourée par le mélange auquel elle ne peut se mélanger, et la forme sphérique est celle qui permet à l'huile d'être le moins possible en contact avec le mélange.moins possible en contact avec le mélange.)
    • Les plantes au secours des berges  + (La berge a un rôle de zone tampon entre leLa berge a un rôle de zone tampon entre le milieu aquatique et le milieu terrestre, elle subit de forts dégâts. Par exemple, les épisodes de crues entraînent une érosion de la berge si elle n’est pas protégée par des végétaux. Le bon fonctionnement de la berge nécessite un équilibre entre les flux solides (végétaux) et les flux liquides (eau). Les végétaux ont la capacité de réduire le débit de l’eau et d’absorber l’eau qui pénètre alors dans le sol.

      Pour limiter l’érosion des berges par l’eau, il est parfois nécessaire de re-planter des arbustes tout le long des cours d’eau, c’est le phénomène de revégétalisation. Certains de ces travaux sont ciblés dans le cadre des SAGES, comme on peut voir sur les photos ci-dessous, prises au cours d’un chantier par le Syndicat Mixte du Bassin du Lay, en Vendée. La première image montre les berges à nu ainsi que l’érosion formée avec le temps. La deuxième montre les travaux en cours, de nombreux arbustes ont été plantés sur les berges pour arriver à la troisième photo.
      Berges-ParSyndicatMixteBassinDuLay



      Avec les arbustes, l’érosion sera présente mais de façon beaucoup moins prononcée, et la berge sera préservée.
      berge sera préservée.)
    • Habitat bioclimatique  + (La mise en pratique de ces règles est encoLa mise en pratique de ces règles est encore une fois une question de compromis. Par exemple, il existe au moins un immeuble passif dont toutes les fenêtres saont au Nord. Il faut prendre en considération : - la pente du terrain et son orientation - les masques solaires environnants (montagnes, immeubles, arbres, ...) - le cas échéant les jolies vues (pas forcément plein Sud) - les sources de nuisances sonores (phoniquement aussi les murs isolent mieux que les vitrages) - les usages des habitants (le matin, on peut préférer avoir le soleil dans la cuisine ou dans la chambre) La compacité des constructions va souvent de pair avec des économies (plans plus simples, moins de matériaux) et est donc souvent acceptée en maison individuelle quand la configuration du terrain le permet. Pour des plus grandes constructions, il faut trouver l'équilibre entre la compacité et l'ensoleillement de la façade Sud.cité et l'ensoleillement de la façade Sud.)
    • Les pollutions invisibles  + (La molécule du pigment qui colore l'encre La molécule du pigment qui colore l'encre a été modifiée par l'eau chaude, le mélange est alors devenu incolore grâce à la forme basique de l’eau. L’eau est amphotère, c’est à dire qu’elle se comporte en acide en présence de base, et en base en présence d’acide. Ici, le pigment est un acide, donc l’eau adopte un comportement basique et fait disparaître la couleur bleue en modifiant la molécule du pigment. L’eau chaude accélère la réaction. Sans chaleur, la réaction serait beaucoup plus longue. Ici, la chaleur est donc un catalyseur. Dans cette expérience, les molécules modifiées sont sensibles au pH (c'est à dire à l'acidité du milieu). Quand on ajoute le vinaigre, la solution devient acide, et les molécules subissent une nouvelle transformation : elles reprennent leur état d’origine et le mélange est à nouveau bleu. Quand on ajoute un produit basique comme ici le bicarbonate de sodium, il réagit avec le mélange et fait disparaître la couleur de l’encre à nouveau, car on neutralise l’acidité du vinaigre. On obtient ainsi une solution basique, ce qui provoque la disparition de la couleur bleue. Si on ajoute encore du vinaigre, il va se trouver en plus grande quantité que le bicarbonate de sodium (il n'y a plus assez de bicarbonate de sodium pour "occuper" tout le vinaigre). Le vinaigre va donc une fois de plus réagir avec la molécule modifiée, qui retrouvera son état d'origine et va encore colorer le mélange en bleu. La composition des encres bleues effaçables est souvent secrète, et diffère selon les marques. Leur couleur bleue est obtenue avec des dérivés d'aniline, notamment le bleu d'aniline. Les effaceurs vendus dans le commerce contiennent du bisulfite de sodium, qui réagit avec le bleu d'aniline en formant un produit incolore. Il s'agit d'une réaction d'oxydo-réduction. Cette expérience montre que tous les produits contenus dans l’eau ne sont pas forcément visibles. C’est notamment le cas de nombreux polluants, que l’on ne peut détecter qu’en réalisant des analyses. Certains produits, qu’on appelle des réactifs, révèlent la présence de polluants invisibles en provoquant une réaction chimique qui colore l'eau.
      réaction chimique qui colore l'eau. <br/>)
    • Encre qui apparaît et disparaît  + (La molécule du pigment qui colore l'encre La molécule du pigment qui colore l'encre a été modifiée par l'eau chaude, le mélange est alors devenu incolore grâce à la forme basique de l’eau. L’eau est amphotère, c’est à dire qu’elle se comporte en acide en présence de base, et en base en présence d’acide. Ici, le pigment de l’encre est un acide, donc l’eau adopte un comportement basique et fait disparaître la couleur bleue en modifiant la molécule du pigment. L’eau chaude accélère la réaction. Sans chaleur, la réaction serait beaucoup plus longue. Ici, la chaleur est donc un catalyseur. Dans cette expérience, les molécules modifiées sont sensibles au pH (autrement dit à l'acidité du milieu). Quand on ajoute le vinaigre qui est un acide, la solution devient acide, et les molécules subissent une nouvelle transformation : elles reprennent leur état d’origine et le mélange est à nouveau bleu. Quand on ajoute du bicarbonate de sodium, il réagit avec le mélange. L’introduction d’une base (le bicarbonate), permet à l’encre de re-disparaître, car on neutralise l’acidité du vinaigre et on obtient une solution basique permettant la disparition de l’encre. Si on ajoute encore du vinaigre, il va se trouver en plus grande quantité que le bicarbonate de sodium (il n'y a plus assez de bicarbonate de sodium pour « occuper » tout le vinaigre). Le vinaigre va donc une fois de plus réagir avec la molécule modifiée, qui retrouvera son état d'origine pour colorer le mélange en bleu.d'origine pour colorer le mélange en bleu.)
    • Plantes et biocides  + (La plante a besoin d'eau pour vivre. Or, lLa plante a besoin d'eau pour vivre. Or, le sel présent à l'extérieur de la plante va faire sortir l'eau des cellules végétales, et ainsi assécher la plante, qui va rapidement se déshydrater et mourir (les feuilles brunissent et sèchent). Le sel tue de nombreux organismes vivant dans les sols (bactéries, vers de terre, micro-organismes...) . Un sol fertile est riche de vie : c'est pourquoi un sol trop salé peut rester infertile pendant de nombreuses années. On mesure l'acidité des éléments grâce au pH (qui varie de 0 (acide) à 14 (basique) et est neutre à 7). La plupart des plantes s'épanouissent dans un sol très légèrement acide, avec un pH autour de 6,5. Le vinaigre est très acide (pH <3). Par conséquent, le mettre en suffisamment grande quantité dans le sol va donc rendre ce dernier plus acide, ce qui causera la mort de certaines plantes et organismes.a la mort de certaines plantes et organismes.)
    • Gonfler un ballon sans souffler  + (Le mélange de bicarbonate et de vinaigre pLe mélange de bicarbonate et de vinaigre provoque une réaction acido-basique suivie d'une réaction de décomposition. Le vinaigre contient de l'acide éthanoïque (CH3COOH), et le bicarbonate de sodium (aussi appelé hydrogénocarbonate de sodium, NaHCO3) est une base. Mélangés, le bicarbonate et le vinaigre réagissent et forment de l'acide carbonique (H2CO3) très instable, qui se décompose aussitôt en formant de l'eau et du dioxyde de carbone (CO2) . Le dioxyde de carbone produit sous forme gazeuse se dégage dans la bouteille. Comme le ballon fixé sur la bouteille rend l'ensemble étanche, le gaz ne peut pas s'en échapper. La pression augmente, ce qui gonfle le ballon, qui reste alors gonflé s'il n'y a pas de fuite. '''Voici le détail des réactions en jeu :''' Le bicarbonate de sodium se dissocie au contact de l'eau en ions sodium (Na+) et  bicarbonate (HCO3) : NaHCO3 → Na+ + HCO3. Le vinaigre contient une part d' acide éthanoïque (environ 5 %), composé d'ions oxonium (H3O+) et éthanoate (CH3COO) : CH3COOH <–> H3O+ + CH3COO. Les ions oxonium réagissent avec les ions bicarbonate et forment de l’acide carbonique : (H2CO3) : H3O+ + HCO3- → H2CO3 + H2O Instable, l’acide carbonique se dissocie immédiatement en formant du dioxyde de carbone (CO2), et de l'eau (H2O) : H2CO3 → H2O + CO2 La réaction complète se résume ainsi : NaHCO3 + CH3COOH → CO2 + H2O + CH3COONa Le CO2 une fois formé est soluble dans l'eau. Toutefois lorsque l'eau arrive à saturation de CO2, l'excédent commence à former des bulles qui finissent par remonter. C'est l'effervescence. (C'est la même chose que pour le sel de cuisine. Le sel de cuisine est soluble dans l'eau. Mais quand on arrive à saturation, le sel en excès reste sous forme solide). NaHCO<sub>3</sub> + CH<sub>3</sub>COOH → CO<sub>2</sub> + H<sub>2</sub>O + CH<sub>3</sub>COONa Le CO2 une fois formé est soluble dans l'eau. Toutefois lorsque l'eau arrive à saturation de CO2, l'excédent commence à former des bulles qui finissent par remonter. C'est l'effervescence. (C'est la même chose que pour le sel de cuisine. Le sel de cuisine est soluble dans l'eau. Mais quand on arrive à saturation, le sel en excès reste sous forme solide).)
    • Fusée Bicarbonate-Vinaigre  + (Le mélange de bicarbonate et de vinaigre pLe mélange de bicarbonate et de vinaigre provoque une réaction acido-basique suivie d'une réaction de décomposition. Le vinaigre contient de l'acide éthanoïque (CH3COOH), et le bicarbonate de sodium (aussi appelé hydrogénocarbonate de sodium, NaHCO3) est une base. Mélangés, le bicarbonate et le vinaigre réagissent et forment de l'acide carbonique (H2CO3) très instable, qui se décompose aussitôt en formant de l'eau et du dioxyde de carbone (CO2) . Le dioxyde de carbone produit sous forme gazeuse se dégage dans la bouteille. Comme le bouchon fixé sur la bouteille rend l'ensemble étanche, le gaz ne peut pas s'en échapper. La pression augmente dans la bouteille et devient trop forte pour être contenue par le bouchon. '''Voici le détail des réactions en jeu :''' Le bicarbonate de sodium se dissocie au contact de l'eau en ions sodium (Na+) et  bicarbonate (HCO3−) : NaHCO3 → Na+ + HCO3−. Le vinaigre contient une part d' acide éthanoïque (environ 5 %), composé d'ions oxonium (H3O+) et éthanoate (CH3COO−) : CH3COOH <–> H3O+ + CH3COO−. Les ions oxonium réagissent avec les ions bicarbonate et forment de l’acide carbonique : (H2CO3) : H3O+ + HCO3- → H2CO3 + H2O Instable, l’acide carbonique se dissocie immédiatement en formant du dioxyde de carbone (CO2), et de l'eau (H2O) : H2CO3 → H2O + CO2 La réaction complète se résume ainsi : NaHCO3 + CH3COOH → CO2 + H2O + CH3COONa Le CO2 une fois formé est soluble dans l'eau. Toutefois lorsque l'eau arrive à saturation de CO2, l'excédent commence à former des bulles qui finissent par remonter. C'est l'effervescence. (C'est la même chose que pour le sel de cuisine. Le sel de cuisine est soluble dans l'eau. Mais quand on arrive à saturation, le sel en excès reste sous forme solide).rive à saturation, le sel en excès reste sous forme solide).)
    • La fonte des glaces - 3e méthode  + (Le premier verre représente la '''glace coLe premier verre représente la '''glace continentale''' : les '''glaciers'''. Le deuxième verre représente la '''banquise''', de la '''mer gelée'''. Il existe plusieurs types de glace sur Terre : les glaciers, la banquise, les icebergs... Un glacier se forme par l''''accumulation''' et la '''compaction''' de '''neige'''. On trouve les principaux glaciers au Groenland, au nord du Canada, en Sibérie, en '''Antarctique''' (pôle sud), en haut des montagnes ('''calotte glaciaire''') comme en Alaska, Pentagonie, Himalaya, les Alpes, la Norvège... La banquise est de la mer gelée, elle se trouve en '''Arctique''' (pôle nord), elle peut faire 3 à 4 mètre d'épaisseur. Un '''iceberg''' est un morceau de glacier qui s'est détaché et qui dérive dans la mer... Les glaciers et la banquise fondent un peu en été et se reforment complètement en hiver. Toutes ces glaces aident à réguler la température du climat, cela est du à leur '''albédo'''. L'albédo est la capacité d'un corps à réfléchir la lumière. Plus un corps réfléchit la lumière plus son albédo sera élevé. Un corps blanc aura un albédo proche de 1 et un corps noir un albédo proche de 0. La glace a un albédo de 0,30-0,40, la neige tassée de 0,40 à 0,70 et la neige fraîche de 0,75 à 0,90. Ainsi, grâce aux glaces il ne fait pas trop chaud sur Terre. Cependant avec le réchauffement climatique, la glace fond de plus en plus en été et se régénère de moins en moins en hiver... Ainsi les glaciers perdent de leur surface et donc de leur pouvoir réfléchissant, ce qui accélère encore plus le réchauffement climatique. La fonte des glaces est un problème pour la biodiversité : les animaux de ces contrées (ours, manchots, phoques...) voient leur habitat se réduire d'année en année...
      itat se réduire d'année en année... <br/>)
    • Dblocadata - Récupérer une information dans une base de données depuis MicroPython  + (Les API permettent aux applications d'interagir les unes avec les autres. Par exemple, une application peut demander des données à une autre application et obtenir des données en retour.)
    • Pomme de pin: ouverture et fermeture  + (Les macrosporophylles vulgairement dénomméLes macrosporophylles vulgairement dénommé écailles se rétractent avec l'humidité pour protéger les ovules ou graines d'une température trop basse ou de l'attaque de certains champignons aussi appelé mycète en terme scientifique. L'ouverture en période plus sèche et plus chaude permettra plus aisément la dispersion des graines et leur germination.

      L'observation détaillée de la structure d'une pomme de pin, ou strobile en dénomination botanique, montre la présence d'écailles ; sur le dessus de ces dernières, il y a 2 graines par écailles.

      Une écaille est constituée de 3 zones hiérarchiques et complexe: la charnière, le corps et l'apophyse ainsi que de multiples tissus ligneux (c'est à dire composé d'une biomolécule appelée lignine) tels que les fibres de sclérenchyme et de sclérides organisé asymétriquement. C'est pour cela qu'une écaille est dite sclérisée.

      Les tissus, confrontés à l'humidité de part leur architecture hiérarchique réalisent un moment fléchissant. En effet, les macrosporophylles sont pourvus d'une double courbure dont un point de bifurcation à une humidité relative d’environ 30%.
      Structure de strobile

      lt;/div><br/>)
    • Volcan sous-marin  + (Les phénomènes de différence de températurLes phénomènes de différence de température sont très courant sur Terre, ils sont en partie à l'origine du vent dans le cas de l'air chaud et de l'air froid, et des courants marins dans le cas de l'eau chaude et de l'eau froide. Dans cette expérience, nous avons voulu illustrer un volcan sous-marin, Les volcans existent sur terre mais aussi sous les océans, Les volcans sous-marins sont plus nombreux que les volcans continentaux mais moins bien connus car plus difficiles à étudier. Certains volcans se situent entre les plaques tectoniques, ils forment ce que l'on appelle les '''dorsales océaniques''', ils sont quasiment toujours en activités et produisent plus de magma que les volcans continentaux. D'autres se trouvent au milieu des plaques, on les appelle les '''volcans intra-plaques''', ils naissent du fait de '''points chauds''', des endroits du manteau où la température est particulièrement élevée. Avec le temps, ces volcans forment des îles. Les îles Galapagos, Hawaï, La Réunion et de Pâques sont des exemple d''''îles de point chaud'''. Les laves des volcans sous-marins ressemblent à la lave terrestre de type basalthique avec un fort taux de fusion. En condition sous-marine, la lave ne peut pas vraiment couler comme sur la terre car sa surface est rapidement refroidie au contact de l'eau et forme des roches en forme de coussin : des ''pillows lava'' (lave en coussin). Vous avez peut-être entendu parler des '''fumeurs noirs''' ? En fait, avec l'activité volcanique des fissures se créent et l'eau de mer s'infiltre, rencontre le magma et remonte à la surface, elle devient très acide et emporte avec elle des métaux contenus dans la roche, elle finit par ressortir et réagit avec l'eau de mer qui était restée à l'extérieur. Cette réaction forme un précipité et on voit des fumées noires. Bien que peu attrayantes pour nous, des bactéries vont en fait se nourrir des produits de ces fumées et s'y développer. D'autres organismes adaptés à cet environnement vont venir se nourrir de ces bactéries et une chaîne alimentaire va se créer.ies et une chaîne alimentaire va se créer.)
    • S'initier aux sciences participatives à la campagne  + (Les programmes de sciences participatives Les programmes de sciences participatives aident les scientifiques et les associations de protection de la biodiversité à collecter un grand nombre d’informations qui leur permettent d’étudier les espèces vivantes et leurs relations avec leur milieu : les écosystèmes. Par exemple, ce type d’observations permet d’évaluer la diversité spécifique des pollinisateurs sur une petite zone, c’est à dire le nombre d’espèces de pollinisateurs différentes que l’on peut trouver en moyenne par mètre carré sur ce secteur. Lorsque la diversité spécifique est élevée, cela signifie que les plantes présentes dans ce carré fournissent suffisamment de nourriture pour accueillir des pollinisateurs nombreux et différents. Le comptage du nombre d’animaux de chaque espèce observée s’appelle l’abondance. On peut parfois observer un faible nombre d’espèces mais de nombreux individus d’une même espèce dans un secteur d’étude. Cela peut s’expliquer par exemple par la présence d’une plante qui attire surtout une espèce en particulier. La destruction de cette plante, sa protection ou sa multiplication, seront alors susceptibles alors d’avoir des conséquences très importantes sur les populations de cette espèce dans ce secteur. N.B : Si des photos de pollinisateurs ont été prises, essayer d'identifier les espèces observées grâce aux fiches d'identification ou sur internet sur le site [[www.spipoll.org]])
    • S'initier aux sciences participatives en ville  + (Les programmes de sciences participatives Les programmes de sciences participatives aident les scientifiques et les associations de protection de la biodiversité à collecter un grand nombre d’informations qui leur permettent d’étudier les espèces vivantes et leurs relations avec leur milieu : les écosystèmes. Par exemple, ce type d’observations permet d’évaluer la diversité spécifique des végétaux dans une même rue et sur un même trottoir, c'est à dire le nombre d'espèce différentes qui s'y développent, ce qui constitue une étude très utile pour les scientifiques. Lorsque la diversité spécifique d’un site est élevée, cela signifie que les habitats présents dans ce milieu offrent suffisamment de nourriture, de refuges et des conditions adaptées pour accueillir des plantes nombreuses et différentes. Le milieu urbain offre souvent moins d'habitats propices au développement des plantes sauvages, elles y sont cependant présentes dans des fissures, des allées, des bordures de pelouses, au pied des arbres... Même si elle reste souvent discrète, cette flore urbaine joue un rôle important : elle contribue à rafraîchir la température, à attirer des insectes pollinisateurs, à filtrer l'eau et à en éliminer des polluants, et parfois embellit le cadre de vie des habitants. En réalisant régulièrement les mêmes mesures pendant plusieurs années sur les mêmes zones d’étude, on met en place un suivi, qui peut aider à mieux comprendre l’évolution de l’environnement. Si le nombre d’espèces diminue au cours du temps, cela peut être le signe d’un déséquilibre naturel ou d’origine humaine, comme le réchauffement climatique, le piétinement, ou l'utilisation de désherbants chimiques qui polluent durablement le sol.chimiques qui polluent durablement le sol.)
    • S'initier aux sciences participatives sur le littoral  + (Les programmes de sciences participatives Les programmes de sciences participatives aident les scientifiques et les associations de protection de la biodiversité à collecter un grand nombre d’informations qui leur permettent d’étudier les espèces vivantes et leurs relations avec leur milieu : les écosystèmes. Par exemple, ce type d’observations permet d’évaluer la diversité spécifique des organismes marins sur une zone neuf fois plus petite qu’un mètre carré. Cela signifie qu’en multipliant le nombre d’espèces différentes compté dans le quadrat par neuf, on obtient la diversité spécifique par mètre carré sur ce secteur. En réalisant ce comptage à plusieurs reprises sur différentes zones de l’estran, on peut estimer la diversité spécifique moyenne du site, un chiffre très utile pour les scientifiques. Lorsque la diversité spécifique d’un site est élevée, cela signifie que les habitats présents dans ce milieu offrent suffisamment de nourriture, de refuges et des conditions adaptées pour accueillir des plantes et des animaux nombreux et différents. En réalisant régulièrement les mêmes mesures pendant plusieurs années sur les mêmes zones d’étude, on peut mieux comprendre l’évolution de l’environnement. Si le nombre d’espèces diminue au cours du temps, cela peut être le signe d’un déséquilibre naturel ou d’origine humaine, comme le réchauffement climatique, une pollution ou encore une pêche excessive.e pollution ou encore une pêche excessive.)
    • Marche comme l'australopithèque  + (Lorsque l'on compare la base du crâne d'unLorsque l'on compare la base du crâne d'un quadrupède et d'un bipède, le trou occipital n'est pas placé au même endroit. Le trou occipital chez les bipèdes est plus centré, alors que celui des quadrupèdes se situe plus en arrière du crâne positionnant ce dernier dans l'alignement de la colonne vertébrale.


      Pour en savoir plus, allez sur cette page du site très documenté [https://www.hominides.com/html/dossiers/bipedie-caracteristique-station-debout.php hominides.com].

      La forme de pieds des australopithèques, de ses membres supérieurs et des traces laissés par ses muscles sur les os, permettent également aux paléoanthropologues de considérer cet hominidé, en plus d'être bipède, comme un arboricole (c'est-à-dire qu'il se déplace en grimpant dans les arbres). Le chimpanzé est aussi un hominidé arboricole (mais également terrestre). Cette locomation arboricole est notamment possible grâce au gros orteil situé loin des autres doigts de pieds (un peu comme notre main), ce qui lui permet d'attraper les branches facilement, autant avec ses pieds que ses mains. Si tu compares les traces de pieds sur le schéma ci-dessous, tu remarqueras que le tracé du pied de l'australopithèque est proche de celui du chimpanzé.
      Cf. hominides.com
      Référence : [https://www.hominides.com/html/references/empreintes-pas-laetoli-deloison.php www.hominides.com]
      )
    • Pile avec des pommes de terre  + (Lorsque l'on introduit du zinc et du cuivrLorsque l'on introduit du zinc et du cuivre dans une pomme de terre, il se produit une réaction d'oxydo-réduction : le zinc transmet ses électrons au cuivre. Ce déplacement d'électrons est un courant électrique. Le suc de la pomme de terre est conducteur, il participe au transport des électrons, c'est ce qu'on appelle un électrolyte. Le courant produit par la première pomme de terre se transmet à la seconde par les fils, et ainsi de suite. De pomme de terre en pomme de terre, les courants électriques s'additionnent. On provoque ainsi la circulation d’un courant électrique suffisant pour allumer la diode. * [https://fr.wikipedia.org/wiki/Pile_%C3%A9lectrique Pile électrique sur Wikipédia] * [https://fr.wikipedia.org/wiki/R%C3%A9action_d'oxydor%C3%A9duction Oxydo-réduction sur Wikipédia] === [[http://www.wikidebrouillard.org/index.php?title=Pile_avec_des_pommes_de_terre&action=edit§ion=11 modifier]] '''Questions sans réponses''' === Que ce passe t-il si l'on multiplie le nombre de pommes de terre par trois? La diode brillera t-elle trois fois plus?r trois? La diode brillera t-elle trois fois plus?)
    • Voiture propulsée par un ballon  + (Lorsque le ballon est gonflé, une tension Lorsque le ballon est gonflé, une tension est imposée par la surface élastique, en réponse à sa déformation (ici c’est une dilatation dont l'allongement relatif sera fonction du module de Young qui entre lui même en jeu, dans l'expression de la contrainte que l'on impose en gonflant) impose une pression à l'intérieur de celui-ci. On rappelle que la loi de Hooke dit que : σ = E x ε *Avec σ (en Pascal) égale à une contrainte soit où F est une force (en Newton) et S la surface (en m²) sur laquelle la force agit. *Avec E (en Pascal) le module de Young *Avec ε l'allongement relatif La tension que l'on trouve dans de nombreux élastiques impose cette force de restitution, force qui tend à ramener le matériau dans sa configuration non étirée. La surface du ballon subit une forte tension lorsque celui-ci est gonflé. Il va chercher à expulser l'air pour revenir à sa position initiale: tant que nous bloquons l'air celui-ci reste tendu, mais au moment où nous lâchons le ballon, alors l'air sort très rapidement par la paille pour expulser la voiture.nt par la paille pour expulser la voiture.)
    • Bateau savon  + (Lorsque le bateau est déposé sans savon, lLorsque le bateau est déposé sans savon, la '''tension superficielle''' de l'eau s'applique de manière équivalente sur la surface de contact du bateau, la résultante des forces engendrées est alors nulle et le système est en équilibre. Une molécule de savon possède un coté qui se lie à l'eau ('''hydrophile''') et un coté qui se lie avec autre chose (graisse, terre, etc.. on dit '''hydrophobe'''). En se mélangeant à l'eau, les molécules de savon cassent la tension superficielle de l'eau. La surface de l'eau se "déchire" en entraînant le bateau, un peu comme si le bateau était la partie mobile d'une fermeture éclair qui s'ouvre. Explication de la tension superficielle Chaque molécule d'eau est attirée par ses voisines. Les molécules sont reliées entre elles par des liaisons électriques et magnétiques, c'est ce qu'on appelle la '''cohésion'''. La cohésion est facilement observable dans un verre d'eau : l'eau est "entière", les molécules ne se baladent pas toutes seules, elles sont toutes ensembles collées les unes aux autres. Que se passe-t-il à la surface de l'eau ? Les molécules d'eau qui sont à la surface ont moins de voisines: elles ont des molécules d'eau uniquement en dessous. Elles vont donc se lier à moins de molécules d'eau, mais les liaisons seront beaucoup fortes. Cette force de liaison se matérialise par une membrane où la tension est plus forte, c'est ce qu'on appelle la tension superficielle.orte, c'est ce qu'on appelle la tension superficielle.)
    • Cours d'eau naturel et cours d'eau reprofilé  + (On a vu qu'une rivière pouvait sortir de sOn a vu qu'une rivière pouvait sortir de son lit lors des crues et causer des inondations. En réalité, la rivière s'écoule au quotidien dans ce qu'on appelle le lit mineur [1]. Lors des crues, elle va occuper son lit majeur, qui peut être bien plus vaste et recouvrir des prairies ou des zones humides qui sont situées sur les bords de la rivière. En aménagement, on parle de zone inondable lorsque l'on se situe dans le lit majeur d'un cours d'eau. La plupart des cours d'eau ne se contentent pas de s'écouler à la même vitesse tout du long. Celle-ci va varier, notamment avec la profondeur. Lorsque la rivière est profonde, l'eau s'écoule lentement. On parle de zone de mouille. Au contraire, lorsque la profondeur est faible l'eau va avancer très vite, souvent en slalomant entre les rochers ou galets. On appelle cela un radier. Sur une rivière qui n'a pas subit d'aménagement, on observe souvent une alternance de mouilles et de radiers le long du tracé. Dans les méandres, c'est l'extérieur du virage qui est le plus profond et l'intérieur qui accumule les galets. Certains cours d'eau ont des tronçons qui ne semblent pas connectés au reste de la rivière ou qui ne s'écoulent pas. On parle alors de bras mort. Ceux-ci peuvent être un formidable refuge de biodiversité [3]. Les poissons et autres animaux peuvent venir s'y reposer à l'abri du courant. Pour qu'une rivière soit en bonne santé et puisse accueillir de nombreuses espèces différentes, il est nécessaire qu'elle possède des habitats variés.saire qu'elle possède des habitats variés.)
    • Quiz des tailles et Micro-mu  + (On peut constater que les virus sont plus On peut constater que les virus sont plus petit que les grains de lumière. Il est donc impossible d'obtenir des images de virus avec des microscopes classique. Il faut des outils type [https://fr.wikipedia.org/wiki/Microscopie_%C3%A9lectronique_%C3%A0_balayage microscope électronique à balayage]layage microscope électronique à balayage])
    • Acidification des océans  + (Plusieurs réactions chimiques se produisenPlusieurs réactions chimiques se produisent. Le CO2 se combine avec l'eau, en formant de l'acide carbonique (H2CO3). L’acide carbonique, instable, se dissocie directement en ions bicarbonate (HCO3-) et H+ (H2CO3 -> HCO3- + H+). La libération d’ions H+ provoque une augmentation de l'acidité, autrement dit le pH diminue. Beaucoup des ions H+ libérés s'associent avec des ions carbonate (CO32-) présents naturellement dans l'eau et forment des ions bicarbonate (H+ + CO32- -> HCO3-). Donc plus le pH diminue plus la concentration en ions carbonate de l'eau de mer diminue également.ement dans l'eau et forment des ions bicarbonate (H<sup>+</sup> + CO<sub>3</sub><sup>2-</sup> -> HCO<sub>3</sub><sup>-</sup>). Donc plus le pH diminue plus la concentration en ions carbonate de l'eau de mer diminue également.)
    • L'évaporation et la concentration des polluants  + (Pour évaporer l'eau, on la porte à ébullitPour évaporer l'eau, on la porte à ébullition. C'est la température à partir de laquelle l'eau passe sous sa forme gazeuse. Pourtant dans la nature l'eau atteint rarement les 100°C et on constate de l'évaporation ! En réalité, le vent facilite grandement ce phénomène, notamment quand l'air est sec. [1] Dans le cas où un composé peut s'évaporer et se retrouver dans l'atmosphère, on dit qu’il est volatil. Les polluants volatils peuvent être très compliqués à traiter car selon la météo, ils peuvent s'échapper et apparaitre à d'autres endroit. Lorsque les polluants ne peuvent pas s'évaporer, leur concentration va augmenter. Le simulateur suivant permet de s'amuser avec les concentrations pour comprendre le phénomène : https://www.phychiers.fr/concentrations/ https://www.phychiers.fr/concentrations/)
    • Evolution du trait de côte  + (Principaux points sur l'évolution du traitPrincipaux points sur l'évolution du trait de côte de quelques communes littorales :

      *Brest : en comparant les photos, on remarque qu'une zone portuaire très étendue a été construite, avec hangars, stations d'épuration, bassins à flots, parkings, chantiers navals, aires de carénage... le port de plaisance est bien visible, de même que le chenal creusé pour y accéder. Les surfaces agricoles sont moins nombreuses que dans les années 50, surtout au Nord, où la ville s'est étendue, et les parcelles (champs) sont plus grandes (ce qui facilite le labourage et la récolte par des engins agricoles à moteur).
      *
      *Lorient : on constate qu'une grande surface de vasière a été recouverte par la construction d'une vaste zone portuaire. La zone photographiée, située en fond de la rade et au centre ville de Lorient, ne comporte pas de parcelles agricoles, ni dans les années cinquante ni plus tard. Les bateaux de plaisance sont nombreux et bien visibles dans le port sur la photo récente, alors qu'ils étaient peu nombreux et dispersés dans les années cinquante. Ceci illustre bien le très fort développement de la plaisance ces dernières décennies, comme de l'ensemble des loisirs nautiques.

      *Arzal : sur un site presqu'exclusivement agricole dans les années cinquante, on distingue le nouveau port de plaisance et sa zone portuaire, et le célèbre barrage qui traverse la rivière. Un autre élément frappant est l'accumulation très importante de sédiment apparue en amont du barrage : une zone envasée s'est formée contre le barrage, et un banc de sable ou de vase s'étend maintenant sur plusieurs centaines de mètres. Les villes et villages se sont étendus, et les surface agricoles ont diminué.
      Evolution du tracé de la rivière et des zones envasées, des aires bâties et agricoles à Arzal



      *St Cast le Guildo : Le principale changement observable sur la côte est la construction du port de plaisance, qui abrite de très nombreux bateaux, et l'apparition de surfaces bétonnées (parkings) à proximité. La plage voisine est toujours intacte (attention à ne pas confondre l'érosion et l'effet des marées, la photo ancienne est visiblement prise à marée basse). La ville s'est légèrement étendu, les parcelles agricoles ont reculé.
      *Roscoff : la commune et sa côte ont beaucoup changé depuis les années 50. Un port-terminal ferry a été construit pour assurer les liaisons des ferries avec l'Angleterre et l'Irlande, accompagné de parkings et voies d'accès de véhicules très étendus. Un important port de plaisance a ensuite été construit (vers 2010). Les surfaces agricoles, très nombreuses dans le passé, ont beaucoup regressé, les champs sont moins nombreux mais ils sont devenus plus grands, les habitations se sont multipliées.
      *Etel : on observe que la ville s'est nettement développée, remplaçant une part importante des surfaces agricoles et des dunes voisines de la ria. L'installation d'un port de plaisance a sans doute été accompagnée d'opérations de dragage et de consolidation des bords de la rivière (les eaux sont visiblement plus profondes) et d'une artificialisation d'une partie de la zone naturelle de vasière de la ria d'Etel.
      *Ile de Groix : on est frappé par la multitude de très petites parcelles agricoles visibles dans les années cinquante sur cette partie de l'île, probablement travaillées encore en partie sans engins agricoles mécanisés à cette époque, qui ont cédé la place à des champs individuellement plus étendus mais moins nombreux. Les zones boisées, très rares sur l'île dans le passé, sont plus nombreuses (le bois servant de combustible avant la généralisation de l'électricité, et même les plus petites surfaces étant réservées à l'agriculture, les arbres étaient coupés). Le village (Locmaria) s'est étendu. La célèbre plage convexe des Grands Sables située à la pointe de l'île dans les années cinquante a migré progressivement vers le Nord sous l'effet de l'érosion.
      *Le Vivier sur Mer : on remarque que les champs occupent globalement une surface moins importante, mais sont chacun plus grands que dans le passé. La ville s'est étendue, et une zone portuaire a été construite. Le chenal naturel a apparemment été élargi et son tracé modifié par dragage.
      i et son tracé modifié par dragage.)
    • Fleurs et insectes pollinisateurs  + (Sur la base de bénéfices réciproques, les Sur la base de bénéfices réciproques, les relations des plantes à fleurs avec leurs pollinisateurs se sont perfectionnées et diversifiées, ce qui donne la grande diversité actuelle. Tous les insectes ne butinent pas les mêmes fleurs : certains pollinisent de nombreuses plantes, d'autres ne sont adaptés qu'à quelques espèces. Trois critères influent sur les relations plantes/insectes. La forme des fleurs conditionne le type d'insecte qui prélève le nectar, et la composition en sucre du nectar et du pollen influence le choix des plantes visitées par les insectes. '''La pollinisation rend aux humains d’immenses services économiques.''' La production de 84% des espèces cultivées en Europe (incluant la grande diversité de légumes et d’arbres fruitiers) dépend directement de la pollinisation par les insectes. '''À l’échelle de la planète, des études scientifiques estiment que le service « pollinisation » offert par le monde animal à l’agriculture vaudrait environ 153 milliards d'euros par an'''. Sans parler de la difficulté et du coût en personnel de la pollinisation si nous devions la faire à la place des insectes pollinisateurs !   Dans la région de l’Hindu Kush (en Himalaya), les pommiers représentent une source de revenus majeure pour les nombreuses familles de paysans. Une grande diversité d’abeilles étaient naturellement acclimatées à cette région de montagne. Or une trop forte utilisation des pesticides les fit disparaître, ce qui fit chuter de moitié la production de pommes. Les habitants durent alors polliniser les pommiers de leurs vergers à la main pour assurer la production de fruits : il fallu une vingtaine de personnes pour polliniser fleur après fleur une centaine de pommiers, travail habituel de 2 ruches ! Mais une stratégie écologique plus durable fut également testée et adoptée : limiter les traitements de pesticides et introduire l'apiculture, jusque-là inconnue dans cette région ! Des colonies d’abeilles domestiques, mais aussi des abeilles locales et adaptées au climat de la région furent introduites, ce qui permit à la production de pommes de redémarrer.t à la production de pommes de redémarrer.)
    • Les petits pois de Mendel  + (Tu peux trouver les trois lois de Mendel sTu peux trouver les trois lois de Mendel sur la page Wikipédia : https://fr.wikipedia.org/wiki/Lois_de_Mendel Pour aller plus loin, il est rare qu'un gène code pour un trait. Souvent un ensemble de gène composé d'allèle plus ou moins dominant ou récessif code pour un caractère. Vous pouvez trouvez un exemple pour la couleur des yeux dans l'humanité avec seulement trois gènes, deux relations de domination à l'adresse : https://www.futura-sciences.com/sante/dossiers/medecine-oeil-vision-dela-vision-667/page/9/decine-oeil-vision-dela-vision-667/page/9/)
    • Conducteur ou isolant  + (Un courant électrique est un déplacement dUn courant électrique est un déplacement d'ensemble de porteurs de charge électrique, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. Dans un conducteur métallique, les particules chargées et mobiles sont des électrons peu liés aux atomes auxquels ils appartiennent (on dit que ces électrons se trouvent dans la bande de conduction). On peut considérer qu'ils se déplacent facilement dans le matériau métallique. Lorsqu'une différence de potentiel est appliquée aux extrémités du conducteur, elle provoque le déplacement de ces électrons, ce que l'on appelle courant électrique. Le réseau des atomes contient des ions positifs : les atomes qui ont perdu un électron. Mais ces derniers, prisonniers du réseau par les liaisons métalliques, sont quasiment immobiles et ne participent que de manière infime à la circulation du courant. Un isolant, aussi appelé matériau diélectrique, est une partie d'un composant ou un organe ayant pour propriété d'interdire le passage de tout courant électrique entre deux parties conductrices. Un isolant possède peu de charges libres, elles y sont piégées, contrairement à un matériau conducteur où les charges sont nombreuses et libres de se déplacer sous l'action d'un champ électromagnétique. La capacité d'un matériau à conduire plus ou moins bien les charges électriques est appelée "conductivité électrique".ues est appelée "conductivité électrique".)
    • Fouille archéologique (comme un vrai paléontologue ! )  + (Une fois tout les squelettes montés, place à la préparation de l'exposition (musée). Préparer sur une table, des supports pour accueillir les squelettes et les pancartes explicatives. Décorés avec des fossiles ou des dessins ou des photos...)