Recherche par propriété

Cette page fournit une simple interface de navigation pour trouver des entités décrites par une propriété et une valeur nommée. D’autres interfaces de recherche disponibles comprennent la page recherche de propriété, et le constructeur de requêtes ask.

Recherche par propriété

Une liste de toutes les pages qui ont la propriété « Deepen » avec la valeur « Densité de l’eau = 1kg/L. 1L d’eau pèse 1kg. Densité du sable = 1,6-2 kg/L. 1L de sable pèse 1,6-2kg. Densité des gravillons ou tous petits cailloux = 1,5kg/L. 1L de gravillons pèse 1,5kg. Densité de la boue liquide = 6kg/L. 1L de boue pèse 6kg. ». Puisqu’il n’y a que quelques résultats, les valeurs proches sont également affichées.

Affichage de 49 résultats à partir du n°1.

Voir (200 précédentes | 200 suivantes) (20 | 50 | 100 | 250 | 500).


    

Liste de résultats

    • La sédimentation : qui coule le plus vite  + (Densité de l’eau = 1kg/L. 1L d’eau pèse 1kg. Densité du sable = 1,6-2 kg/L. 1L de sable pèse 1,6-2kg. Densité des gravillons ou tous petits cailloux = 1,5kg/L. 1L de gravillons pèse 1,5kg. Densité de la boue liquide = 6kg/L. 1L de boue pèse 6kg.)
    • Sel qui danse  + ('''Les cordes vocales''' Les cordes vocal'''Les cordes vocales''' Les cordes vocales ne sont en réalité pas vraiment des cordes, mais des petits plis musculaires au fond de ta gorge, avec une forme de lèvres presque fermées, qui vibrent au passage de l’air. Pour pouvoir produire un son avec ta voix, tu as besoin de plusieurs parties de ton corps : les poumons, pour faire le plein d’air, la gorge dans laquelle se trouvent le larynx et les cordes vocales pour créer les vibrations, et la bouche pour faire résonner les vibrations et les rendre audible. '''La résonance''' Observe la forme de ta bouche lorsque tu parles, puis lorsque tu cries. Pour crier, nous ouvrons la bouche en grand. C’est pour augmenter le volume de notre voix. On peut aussi changer la position de nos lèvres et de notre langue pour changer le son.es et de notre langue pour changer le son.)
    • Découvrir les habitants du sol  + ('''Qu’est-ce qui permet de dire qu’une esp'''Qu’est-ce qui permet de dire qu’une espèce fait partie des organismes du sol ?''' Tous les habitants du sol ne vivent pas forcément dans le sol. Et à l’inverse, tout ce qui touche le sol ne fait pas forcément partie des habitants du sol (sinon, nous, humains, en ferions partie) ! Par contre nous sommes toutes et tous dépendants du sol (en tant que support, base de notre alimentation…). Ainsi, les chercheurs s’accordent à dire que '''la biodiversité du sol regroupe l'ensemble des formes de vie qui présentent au moins un stade actif de leur cycle biologique dans le sol. Elle inclut les habitants de la matrice du sol ainsi que ceux de la litière et des bois morts en décomposition.''' Toutes ces espèces, quelle que soit leur taille, interagissent directement avec le sol (via leur habitat, leur reproduction, leur alimentation...), le modèlent, agissent sur sa texture (proportion d’éléments minéraux dans un sol : sables, limons, argiles), sa structure (la taille et l’organisation des particules de sol entre elles), sa composition (les différentes couches de sol). Cette biodiversité du sol est encore assez peu connue, mais elle a un rôle très important. C’est pour cela qu’il est important de la protéger, elle et son habitat. '''Ainsi, parmi la liste des espèces proposées dans l’étape 4 - partie 2 :''' *'''font partie des habitants du sol :''' **les moisissures, les bactéries, les micro-algues, les enchytréides (vivent dans le sol), **les renards, les taupes, les vipères, les castors, les lapins, les souris (ont leurs terriers dans le sol), **les chênes et les marguerites (ont leurs racines dans le sol et s’y nourrissent). *'''ne font pas partie des habitants du sol''' : les poules, les chats, les cerfs, les pigeons, les moustiques, les libellules, les chiens, les abeilles (ils n’ont pas d’interactions directes avec le sol, excepté y trouver parfois leur nourriture).interactions directes avec le sol, excepté y trouver parfois leur nourriture).)
    • Oeuf qui ramollit  + (1/ Lorsque l’on plonge un œuf dans du vina1/ Lorsque l’on plonge un œuf dans du vinaigre, il se produit une réaction chimique. La coquille. est constituée de carbonate de calcium. C’est le principal composant du calcaire. Il est insoluble dans l’eau et heureusement car sinon cuire un œuf ne serait pas de tout repos ! Le vinaigre contient un acide : c'est l’acide acétique (sa concentration est indiquée généralement sur la bouteille en %). L'acide acétique du vinaigre réagit avec le carbonate de calcium.



      Acide acétique + carbonate de calcium -----> gaz carbonique + eau + bicarbonate de calcium

      '''CH3COOH + CaCO3 -----> CO2 + H2O + Ca (CH3COO)2'''





      Il y a donc également production d’eau et de bicarbonate de calcium. Ce dernier est soluble dans l’eau et donc ne se remarque pas à l’œil nu. Il est présent sous forme d’ions Ca(II) et d’ions bicarbonates.

      2/ Lorsque la totalité du carbonate de calcium a été consommé, la réaction s’arrête. Il ne reste alors plus que la membrane de l’œuf pour contenir le jaune et le blanc. La couleur de la coquille n’a cependant pas disparu car les pigments n’ont pas été dissous au cours de la réaction. Ils se sont donc naturellement déposés sur cette membrane. Ils ne sont toutefois pas solidaires de cette dernière et le fait de simplement frotter le couteau dessus permet de les retirer.


      On a alors l’impression d’avoir obtenu un œuf dur. Mais si l’on tient cet œuf entre les mains, on constate que celui-ci reste assez malléable et semble contenir un liquide.

      Pour confirmer cette hypothèse, on déchire cette membrane. Le jaune et le blanc de l’œuf sont bien encore liquides. L’intérieur de l’œuf est intact ? Pas si sûr…


      Si on compare le pH du blanc de l’œuf de l’expérience avec celui d’un œuf intact, on constate qu’il est moins élevé dans le premier cas, ce qui indique que du vinaigre est entré. Il semblerait donc que la membrane ne soit pas si imperméable que ça. Cette membrane, est "hémiperméable", elle laisse passer un certain nombre d'éléments, dont des gaz nécessaires à la respiration de l'oeuf (en effet quand le foetus se céveloppe, il respire, c'est à dire qu'il rejette du CO2 et absorbe de l'O2) .


      En principe, on pourrait donc cuire un œuf juste avec du vinaigre. Pour s’en assurer il est possible de faire l’expérience suivante : verser le contenu d’un œuf dans un récipient et y ajouter du vinaigre. On observe alors la formation de filaments blancs. L’œuf coagule (comme lorsqu’on le cuit). Si on le laisse suffisamment longtemps (au moins 5 jours), la totalité de l’œuf aura coagulé.


      '''Troublant, non ?!'''


      4/ Pas tant que ça quand on sait que l’œuf est principalement constitué de protéines comme l’ovalbumine. En effet, ces protéines sont constituées d’acides aminés attachés ensemble par des liaisons covalentes (fortes). Leur forme tridimensionnelle est assurée par des liaisons faibles de différente nature. Or le fait d’abaisser le pH rompt un certain nombre de ces liaisons (dénaturation) et permet à cette chaîne de prendre une forme linéaire. Cette nouvelle structure rend possible certaines interactions avec d’autres molécules (elle a en quelque sorte « les bras libres »). Et notamment l’eau avec laquelle elle s’associe par l’intermédiaire de ponts disulfures (coagulation). L’interaction entre ces différentes chaînes construit un réseau qui emprisonne les molécules d’eau et rigidifie l’œuf.

      Ramollir un oeuf Coagulationoeuf.jpg



      5/ En revanche si vous faites cette expérience qui demande vraiment beaucoup de patience et de précautions, vous constaterez que l’œuf cuit de cette manière n’a pas vraiment un aspect très comestible. Pourtant il l’est !
      anche si vous faites cette expérience qui demande vraiment beaucoup de patience et de précautions, vous constaterez que l’œuf cuit de cette manière n’a pas vraiment un aspect très comestible. Pourtant il l’est !)
    • Poivre dans l'eau  + (<u>Explication de la tension superfiExplication de la tension superficielle Chaque molécule d'eau est attirée par ses voisines. Les molécules sont reliées entre elles par des liaisons électriques et magnétiques, c'est ce qu'on appelle la '''cohésion'''. La cohésion est facilement observable dans un verre d'eau : l'eau est "entière", les molécules ne se baladent pas toutes seules, elles sont toutes ensembles collées les unes aux autres. Que se passe-t-il à la surface de l'eau ? Les molécules d'eau qui sont à la surface ont moins de voisines: elles ont des molécules d'eau uniquement en dessous. Elles vont donc se lier à moins de molécules d'eau, mais les liaisons seront beaucoup fortes. Cette force de liaison se matérialise par une membrane où la tension est plus forte, c'est ce qu'on appelle la tension superficielle. Pourquoi le poivre fuit avec le produit vaisselle? En touchant la surface de l'eau avec du détergent à vaisselle, on affaiblit la tension superficielle, cet effet se propage et le poivre se disperse, car la tension superficielle sur le bord du plat est supérieure à celle que l'on retrouve au centre; le poivre est donc attiré vers le bord du plat. Le liquide vaisselle est un agent tensioactif, c'est à dire qu'il modifie la tension superficielle entre deux surfaces (dans ce cas-ci en l'abaissant). Un agent tensioactif est '''amphiphile,'''il est constitué de deux parties de polarité différente: l’une lipophile (qui peut se lier aux matières grasses) et l’autre hydrophile (qui peut se lier à l’eau).
      grasses) et l’autre hydrophile (qui peut se lier à l’eau). <br/>)
    • Ballon en lévitation  + (=== '''Allons plus loin dans l'explication=== '''Allons plus loin dans l'explication''' === Si un liquide s'écoule dans une canalisation (ici, l'[http://www.wikidebrouillard.org/index.php?title=Air air] sortant du sèche-cheveux), comme il est incompressible, son débit (volume transitant à travers une surface par unité de temps) est constant. Si la canalisation s'élargit, alors la vitesse diminue (puisque le débit est le produit de la vitesse par la section, les deux varient à l'inverse). Le théorème de Bernoulli nous indique alors que la pression augmente. À l'inverse, si la canalisation se rétrécit, le fluide accélère et sa pression diminue : '''c'est l'effet Venturi'''. Ce résultat est assez peu intuitif (on s'attendrait à ce que la pression augmente lorsque la section diminue). Si maintenant la conduite reste de section constante mais que l'on met un obstacle à l'intérieur (ici, le ballon ou la balle), l'obstacle diminue la section. On a donc le même effet. Si cet obstacle est un cylindre tournant, d'axe perpendiculaire à l'axe de la canalisation, alors le frottement accélère le fluide d'un côté et le ralentit de l'autre. On a donc une diminution de pression d'un côté et une augmentation de l'autre, le cylindre subit une force : c'est l'effet Magnus (notons que l'on considère souvent l'effet Magnus dans l'[http://www.wikidebrouillard.org/index.php?title=Air air], qui est un fluide compressible, mais le principe général reste le même). * [http://fr.wikipedia.org/wiki/Effet_Venturi Effet Venturi] sur Wikipédia * D'autres applications de l'effet Venturi sur :[http://www.unilim.fr/scientibus/36manips/fiche_det.php?num_manip=10 Effet Venturi] sur Scientibusnum_manip=10 Effet Venturi] sur Scientibus)
    • La fonte des glaces  + (Cette expérience permet d’expliquer la fonCette expérience permet d’expliquer la fonte des glaces sur la planète. As-tu déjà entendu parler de glaciers, de banquise et d’iceberg ? '''Le glacier''' se forme en général en haute montage ou au niveau des pôles grâce à l'accumulation de la neige. En se tassant sous son propre poids, la neige devient compacte : elle expulse progressivement l'air qu'elle renferme et se transforme en glace. Lorsqu’on parle de glaciers, on peut utiliser les mots calotte glaciaire et inlandsis : la calotte glaciaire est un très grand glacier, et l'inlandsis correspond à plus de 50 000 km² de glace terrestre (l’Arctique et l’Antarctique sont les deux seuls inlandsis qui existent à ce jour sur la planète). Parfois, un morceau de glacier, parfois très gros, se détache et tombe dans la mer où il dérive au gré des courants : c’est ce qu’on appelle un '''iceberg'''. '''La banquise''' se forme en mer, contrairement au glacier. Des cristaux de glace se forment lorsque l'eau atteint -1,8 °C. Ces cristaux se solidarisent et forment une couche de glace qui peut atteindre 3 à 4 mètres d'épaisseur. Que se passe-t-il lorsque la banquise ou les glaciers fondent ? L’expérience nous montre que de la fonte de la glace déjà présente dans l’eau (= banquise) ne fait pas monter le niveau de l’eau (verre 1). Par contre, lorsque la glace terrestre (= glaciers, chutes d'icebergs) fond, nous observons une augmentation du niveau de l'eau (verre 2). Le résultat observé dans le verre 1 s'explique par le rôle de la '''poussée d'Archimède'''. Celle-ci correspond à la force verticale, dirigée de bas en haut, que subit un corps plongé dans un fluide (liquide ou gaz), opposée au poids du volume de fluide déplacé. La poussée d'Archimède permet d'expliquer notamment pourquoi un bateau flotte ou une montgolfière peut s'élever dans les airs, ou comment un plongeur ou un sous-marin peuvent contrôler leur flottabilité en faisant varier la pression d'un gaz dans un réservoir.
      En réalité, l'eau sous forme de glace occupe un peu plus de place que l’eau liquide. Tu l'as peut-être déjà remarqué à la maison après avoir placé de l'eau ou un bac à glaçons au congélateur. Il arrive parfois aussi que le gel fasse éclater un tuyau d'eau mal protégé lorsque les températures sont très basses. Ce phénomène est particulier à l'eau et à quelques autres composés et est lié aux propriétés chimiques des liaisons atomiques. Cependant, comme tu l'as sans doute observé, les glaçons placés dans le verre 1 ne sont pas totalement immergés dans l'eau. Grâce à la poussée d'Archimède, on comprend ainsi que le volume de glace immergé correspond au volume d'eau nécessaire pour égaler le poids du glaçon (ou de l'iceberg !). Selon cette même loi, un glaçon produit en fondant le même volume d'eau que la glace solide occupait précédemment. Le niveau de l'eau reste donc le même.
      A présent que nous avons compris comment la fonte des glaces entraîne la montée du niveau des océans, il reste à expliquer '''pourquoi''' ce phénomène se produit à l'heure actuelle. En effet, depuis un siècle, le niveau des mers et des océans s'est élevé d'environ 20 à 30 cm. Au cours de la même période, la température moyenne sur la planète a augmenté d'environ 0,8 °C (à 0,2 °C près). L'atmosphère et les océans sont intimement liés : lorsque la température de l'atmosphère augmente, celle des océans augmente aussi. Le '''changement climatique''' est une des raisons principales de la montée des eaux. Cependant, contrairement à ce que l'on pourrait penser intuitivement, la fonte des glaces n'explique pas à elle seule cette montée des eaux. Un autre phénomène lié à la hausse des températures joue également un rôle très important, il s'agit de la '''dilatation thermique'''. L’eau est un corps qui se dilate sous l’effet d’une augmentation de température. La dilatation signifie l’augmentation du volume : lorsqu’un corps se dilate, il prend plus de place. Les molécules d’eau (les briques microscopiques qui composent l’eau) s’agitent lorsque la température augmente, et prennent donc plus de place. A titre d’exemple, imagine qu'une cinquantaine de personnes sont dans une grande salle : si les personnes restent immobiles ou bougent peu, elles tiennent facilement dans cet espace restreint. Par contre, si les personnes commencent à s’agiter, ou à danser, elles vont s’éloigner les unes des autres et prendre plus d’espace. C’est un peu pareil pour les molécules d’eau : quand la température augmente elles s’agitent, s’écartent les unes des autres, et le volume de l’eau augmente.
      Même si notre expérience ne mettait pas en évidence directement le rôle de la dilatation dans la montée du niveau de l'eau, celle-ci est toutefois bel et bien présente et il se pourrait d'ailleurs que son impact soit observable dans de bonnes conditions. En effet, dans l'expérience, nous avons utilisé de l'eau chaude pour faire fondre les glaçons plus vite. Une fois les glaçons fondus, ceux-ci ont fait légèrement baisser la température de l'eau contenue dans le verre 1 et ont donc provoqué une faible diminution de son volume. Cela pourrait donc avoir également contribué au résultat de l'expérience (le verre 1 ne déborde pas). Pour s'en assurer, on peut refaire l'expérience avec de l'eau froide et vérifier que nous obtenons bien les mêmes résultats. Dans ce cas, les conclusions de notre expérience resteraient toujours valables.
      La fonte des glaces et la dilatation thermique des eaux de surface des mers et océans, toutes deux liées au changement climatique, sont à l'origine de la hausse du niveau des océans (en réalité, de nombreux autres facteurs contribuent à la hausse observable, mais dans des proportions bien moindres). Les '''conséquences''' de cette montée des eaux risquent d'être dramatiques au cours des prochaines décennies. En effet, les modèles proposés par les chercheurs prédisent qu'à l'horizon 2100 l'élévation du niveau des eaux pourrait atteindre 50 cm, voire jusqu'à 3 m si on prend en compte les hypothèses les plus pessimistes ! Or, une grande part de la population mondiale vit aujourd'hui dans la zone littorale, et ce chiffre est en constante augmentation (634 millions de personnes vivraient ainsi à proximité des côtes et à une altitude inférieure à 10 m). Le retrait du trait de côte va donc provoquer des déplacements de ces populations et créer ce que l'on appelle des réfugiés climatiques. Les premiers territoires touchés seront d'une part les îles de faible altitude de l'Océan Pacifique (Tuvalu, Kiribati, etc.) et les pays où les densités de populations littorales sont les plus fortes, principalement en Asie (Chine, Inde, Bangladesh, Indonésie, Vietnam). Les humains ne seraient pas les seuls impactés, car les zones littorales sont aussi de grands réservoirs de biodiversité. Une montée des eaux pourrait entraîner la submersion et l'érosion de nombreux habitats, la salinisation des estuaires, l'accroissement des inondations, etc.
      x pourrait entraîner la submersion et l'érosion de nombreux habitats, la salinisation des estuaires, l'accroissement des inondations, etc.)
    • Lampe a lave, sans lampe  + (Cette lava lampe fait intervenir plusieursCette lava lampe fait intervenir plusieurs phénomène. Il y a la densité. Il y a l'hydrophobicité. Il y a la réaction bicarbonate-vinaigre. Il y a la tension superficielle. Cela fait vraiment beaucoup de choses qui se produisent en même temps ! '''Le vinaigre coule dans l'huile car il est moins dense que l'huile''' Les différentes matières ont des propriétés différente. La densité compare des matières deux à deux. Dire qu'un corps est plus dense qu'un autre signifie que la masse volumique du corps n°1 est plus importante que la masse volumique du corps n°2. La masse volumique d'un corps se calcule en divisant le poids de ce corps par son volume. Par exemple pour un litre d'eau on va diviser 1kg (le poids d'un litre d'eau) par son volume (1l). Dans le système de mesure international, l'unité de référence utilisée pour la masse volumique est le kg/m3. Dans ce système, dire qu'un litre d'eau pèse 1kg se dit : la masse volumique de l'eau est de 1000 kg / m3 (il y a 1000l dans un m3). En fait ce n'est pas tout à fait exact. En effet la température influe sur la masse volumique d'un corps. Ainsi la masse volumique de l'eau est de 1000 kg / m3 à 4°C et de 998,3 kg / m3 à 20°C La masse volumique du vinaigre est très proche de celle de l'eau car le vinaigre contient essentiellement de l'eau donc 998,3kg/m3 à température ambiante La masse volumique d'une huile est en général comprise en 800 et 900 kg / m3 à température ambiante. Comme 998 > 900, quand on verse de l'huile dans un bocal qui contient du vinaigre, l'huile se répartit à a surface du vinaigre. Ceci peut aussi s'exprimer en utilisant le concept de poussée d'Archimède. "« Tout corps plongé dans un fluide au repos, entièrement mouillé par celui-ci ou traversant sa surface libre, subit une force verticale, dirigée de bas en haut et opposée au [https://fr.wikipedia.org/wiki/Poids poids] du volume de fluide déplacé. Cette force est appelée ''poussée d'Archimède''. Elle s'applique au centre de masse du fluide déplacé, appelé ''centre de poussée''. »" (issu de Wikipedia). Quand la poussée d'archimède d'un corps compense son poids, ce corps flotte. Quand la poussée d'archimède d'un corps ne compense pas son poids, le corps coule (qu'il soit liquide ou solide n'y change absolument rien !) Or la poussée d'archimède qui s'applique sur le volume d'huile dépend du poids du volume de vinaigre "déplacé", donc de sa masse volumique. '''L'huile et le vinaigre ne se mélangent pas car le vinaigre est hydrophile alors que l'huile est hydrophobe''' Les molécules sont formées d'atomes assemblés entre eux. Cet assemblage n'est pas toujours complètement "parfait" et dans certaines molécules, les électrons qui entourent un atomes sont attirés par "l'atome d'à côté". C'est le cas de l'eau de formule H2O. Les életrons des atomes d'hydrogène sont attirés par l'atome d'oxygène et au final dans une molécule d'eau (neutre électriquement) les atomes d'hydrogène sont "un peu" positifs et les atomes d'oxygène "un peu négatifs". Au final les atomes d'hydrogène d'une molécule d'eau sont attirés par l'atome d'oxygène de la molécule d'à côté. Quand les molécules (d'eau ou autres) interagissent entre elles de cette façon, on appelle les force qui les attirent les unes vers les autres "liaison hydrogène". Quand une molécule est fortement concernée par ce genre de phénomène ont dit qu'elle est "polaire" car des "pôles électriques" ont tendance à se former à l'intérieur. Quand une molécule n'est que peu ou pas concernée par ce phénomène on dit qu'elle est "apolaire". Les molécules polaires ont donc tendance à s'attirer les unes les autres. Dans ces conditions quand on mélange des molécules polaire et apolaires, les molécules polaires s'attirent, se rapprochent, forment de micro goutelettes et excluent les molécules apolaires. C'est ce qui se passe avec le vinaigre et l'huile. L'eau est polaire, l'huile apolaire. (Le vinaigre est essentiellement formé d'eau). Les molécules d'eau restent scotchées entre elles donc les deux liquides ne se mélangent pas. Un composé "hyrdrophile' (qui aime l'eau, qui va se mélanger avec l'eau) est polaire. Un composé hydrophobe (qui fuit l'eau, qui va s'exclure de l'eau) est apolaire. '''Quand on met du bicarbonate de sodium avec du vinaigre, il se produit une réaction dite "acido-basique" dont un des résultats est la production de CO2 (dioxyde de carbone)''' Le bicarbonate de sodium se dissocie au contact de l'eau en ions sodium (Na+) et  bicarbonate (HCO3) : NaHCO3 → Na+ + HCO3. Le vinaigre contient une part d' acide éthanoïque (environ 5 %), composé d'ions oxonium (H3O+) et éthanoate (CH3COO) : CH3COOH <–> H3O+ + CH3COO. Les ions oxonium réagissent avec les ions bicarbonate et forment de l’acide carbonique : (H2CO3) : H3O+ + HCO3- → H2CO3 + H2O Instable, l’acide carbonique se dissocie immédiatement en formant du dioxyde de carbone (CO2), et de l'eau (H2O) : H2CO3 → H2O + CO2 La réaction complète se résume ainsi : NaHCO3 + CH3COOH → CO2 + H2O + CH3COONa Le CO2 une fois formé est soluble dans l'eau. Toutefois lorsque l'eau arrive à saturation de CO2, l'excédent commence à former des bulles qui finissent par remonter. C'est l'effervescence. (C'est la même chose que pour le sel de cuisine. Le sel de cuisine est soluble dans l'eau. Mais quand on arrive à saturation, le sel en excès reste sous forme solide). Le bicarbonate de sodium est aussi appelé bicarbonate de soude. '''Les bulles de dioxyde de carbone restent collées sur le vinaigre quand la goutte est au fond du pot et elles éclatent à la surface de l'huile en raison de la tension supercielle''' Le vinaigre réagit avec le bicarbonate pour former du CO2. Celui-ci est en trop grandes quantités pour rester dissout dans le vinaigre, il forme de petites bulles. Sa densité est beaucoup plus faible que celle du vinaigre dont il remonte à la surface de la goutte de vinaigre. Quand il arrive à la surface de la goutte de vinaigre, il rencontre de l'huile. Si le seul phénomène en cours était la différence de densité, la bulle remonterait seule à la surface de l'huile. Mais ce n'est pas le cas. Le CO2 possède lui même une légère charge positive car la charge négative de l'atome de carbone C ne suffit pas tout à fait à équilibrer les charges positives des atomes d'oxygène O. Donc le CO2 se retrouve a avoir plus d'affinité pour l'eau (molécule polaire) que pour l'huile (molécule apolaire). Cette affinité du CO2 pour l'eau qui compose le vinaigre fait que la bulle de CO2 est plus stable en restant scotchée sur le vinaigre qu'en remontant dans l'huile. La tension qui existe à la surface de la bulle est plus faible au contact du vinaigre qu'au contact de l'huile. Donc la bulle reste scotchée jusqu'à ce que "l'effet bouée" fasse remonter le tout. Une fois à la surface, la bulle entre en contact avec l'air, la tension de contact à la surface de la bulle diminue brutalement et la bulle éclate.
      ose le vinaigre fait que la bulle de CO2 est plus stable en restant scotchée sur le vinaigre qu'en remontant dans l'huile. La tension qui existe à la surface de la bulle est plus faible au contact du vinaigre qu'au contact de l'huile. Donc la bulle reste scotchée jusqu'à ce que "l'effet bouée" fasse remonter le tout. Une fois à la surface, la bulle entre en contact avec l'air, la tension de contact à la surface de la bulle diminue brutalement et la bulle éclate.<br/>)
    • Arc-en-ciel chez toi !  + (Chaque couleur est caractérisée par une loChaque couleur est caractérisée par une longueur d'onde de l'ordre du nanomètre. Les couleurs visibles par l'œil humain sont les couleurs dont la longueur d'onde se situe entre 380 et 740 nanomètres. [ < 380] ultraviolet [380 - 446] violet [446 - 520] bleu [520 - 565] vert [565 - 590] jaune [590 - 625] orange [625 - 740] rouge [ > 740] infrarouge Si on assemble tous les intervalles des couleurs que l'humain peut voir, on obtient un intervalle allant de 380 à 740 nanomètres. Cette fusion des couleurs de l'arc-en-ciel donne la couleur blanche. Les différentes couleurs qui composent la lumière blanche ne sont pas déviées de la même façon par l'eau, d'où le phénomène de décomposition de lumière qui se traduit par l'arc-en-ciel. La lumière blanche est décomposable. C’est une lumière polychromatique, c’est-à-dire composée de plusieurs couleurs. L'expérience met en œuvre un système dispersif permettant la dispersion (décomposition) de la lumière. Lorsqu'un rayon lumineux pénètre l'eau, il y a une décomposition de la lumière car les deux milieux (air et eau) possèdent un indice de réfraction différent. Or la réfraction est fonction de la longueur d'onde, ce qui entraîne la décomposition du rayon en autant de couleurs qui le constituent. rayon en autant de couleurs qui le constituent.)
    • Arc-en-ciel de chambre  + (Chaque couleur est caractérisée par une loChaque couleur est caractérisée par une longueur d'onde de l'ordre du nanomètre. La longueur d’onde est la distance parcourue par l’onde lumineuse pendant la durée d’une période (deux pics sur le graphique)

      Arc-en-ciel de chambre OndeCouleur.png
      Arc-en-ciel de chambre LongeurOndeCouleur.png



      Les couleurs visibles par l'œil humain sont les couleurs dont la longueur d'onde se situe entre 380 et 740 nanomètres.

      [ < 380] ultraviolet

      [380 - 446] violet

      [446 - 520] bleu

      [520 - 565] vert

      [565 - 590] jaune

      [590 - 625] orange

      [625 - 740] rouge

      [ > 740] infrarouge

      Si on assemble tous les intervalles des couleurs que l'humain peut voir, on obtient un intervalle allant de 380 à 740 nanomètres.


      La lumière blanche est polychromatique, c’est-à-dire composée de plusieurs couleurs. L'addition des couleurs de l'arc-en-ciel donne la couleur blanche. L'expérience permet la dispersion (décomposition) de la lumière : les différentes couleurs qui composent la lumière blanche ne sont pas déviées de la même façon par l'eau.

      Lorsqu'un rayon lumineux pénètre l'eau, il se produit une décomposition de la lumière car les deux milieux (air et eau) possèdent des indices de réfraction différents. Or la réfraction est fonction de la longueur d'onde, ce qui entraîne la décomposition du rayon en autant de couleurs qui le constituent.

      La lumière est brisée à la sortie de l'eau, chaque couleurs qui composent la lumière blanche ne se brisent pas sous le même angle, d'où le fait qu'elles apparaissent à des endroits différents et la formation d'un arc-en-ciel.
      u'elles apparaissent à des endroits différents et la formation d'un arc-en-ciel.)
    • Faire flotter de l'eau sur du thé  + (Dans ce cas précis, si on utilise du thé chaud, quel facteur augmentant la densité va primer ? La chaleur du thé (il y aurait alors mélange en versant l'eau froide), ou le sucre du thé (le thé reste au fond) ?)
    • Objet qui réapparaît  + (En physique des ondes, la réfraction désigEn physique des ondes, la réfraction désigne le fléchissement d'une onde (notamment optique, acoustique ou sismologique) à l'interface entre deux milieux aux vitesses de phase différentes sur le plan chimique ou physique (densité, impédance, température...) La lumière est déviée lorsqu'elle passe d'un milieu transparent à un autre (par exemple : de l'air à l'eau, ou le contraire…). C'est ce phénomène qu'on observe par exemple lorsque l'on regarde une paille dans un verre : celle-ci paraît brisée. Cette « fracture » apparente est à l'origine du mot « réfraction ». Plus d'infos sur [http://fr.wikipedia.org/wiki/Refraction Wikipédia]r.wikipedia.org/wiki/Refraction Wikipédia])
    • Déplacements de l'air  + (L'air est composé de gaz (azote, oxygène, L'air est composé de gaz (azote, oxygène, des traces d'autres gaz). Un gaz est constitué de molécules. La masse d'une molécule est constante mais avec la chaleur son volume augmente. Donc le rapport entre la masse et le volume (densité) diminue. Exemple numerique: Une mole d'azote pèse 28 g. Une mole d'azote à 0°C occupe 22,4 litre. Sa masse volumique est 28 / 22,4 = 1,25 kg / m3 ou 1,25 g/L Loi de Mariotte : PV/T = Cste P = Pression atmosphérique (Pa ou bar) V = volume (kg/m3 ou g/L) T = Température (K) La même mole à 50°C (293 K) occupe 22,4 * (273 + 50 ) / 273 = 26, 5 L Sa masse volumique à 50° est 28 / 26,5 = 1,056 kg / m3 ou 1,056 g/L La densité (masse volumique) de la molécule d'azote passe de '''1,25 g/L''' à 0° à '''1,056 g/L''' à 50°1,25 g/L''' à 0° à '''1,056 g/L''' à 50°)
    • Volcans par milliers  + (Le magma n'a pas une composition uniforme Le magma n'a pas une composition uniforme à l'échelle de la planète. Il ne contient pas forcément les mêmes éléments. Il peut être riche en silice. Dans ce cas là, il a tendance a être très visqueux. Quand il contient peu de silice, il est beaucoup plus fluide. Quand le magma se fraye un chemin vers la surface de la Terre, la pression qu'il subit diminue. Sous l'effet de cette diminution de pression, les gaz dissous dans le magma se libèrent. Des bulles se forment. Quand le magma avance vite vers la surface de la Terre et qu'il est visqueux, le gaz n'a pas le temps de s'échapper. La lave qui arrive à la surface de la Terre contient beaucoup de gaz et comme elle est visqueuse, cela forme des morceaux qui sont expulsés violemment. On obtient une éruption explosive dans ce cas là. Quand le magma est plus liquide ou qu'il avance lentement vers la surface de la Terre, le gaz qui s'en échappe a le temps de s'en aller (il avance en fait plus vite vers la surface de la Terre, ce qui sépare le gaz de la lave). Dans ce cas, l'écoulement de la lave sera beaucoup moins violent, d'où des éruptions effusives. Il existe une dernière catégorie d'éruption, moins connue et potentiellement très meurtrière : les éruptions limniques. Dans ce cas, le gaz qui s'est échappé du magma s'accumule au lieu d'être libéré progressivement. Or le gaz contenu dans le magma est souvent du dioxyde de carbone (CO2). Lorsque la poche de gaz est libérée brutalement, le gaz (invisible) s'écoule le long de la pente du volcan. Comme le CO2 est un peu plus dense que l'air, le gaz s'écoule vraiment le long de la pente comme le ferait un liquide. Or le CO2 à haute concentration est très toxique pour les êtres vivants. Ainsi en 1986 l’éruption limnique du lac Nyos au Cameroun a tué plus de 1700 personnes. Depuis une colonne de dégazage permanente a été installée. Le CO2 est libéré progressivement, ne menaçant plus les êtres vivants de la vallée en contrebas.s êtres vivants de la vallée en contrebas.)
    • Propagation du son dans l'eau et l'air  + (Le son n’est pas quelque chose d’immatérieLe son n’est pas quelque chose d’immatériel, c’est une onde (ou vibration), c’est-à-dire un déplacement de matière. Selon la densité de la matière déplacée, la vibration aura plus ou moins de force. L'air est formé de minuscules molécules qui sont éloignées les unes des autres. Dans l'eau, les molécules, différentes de celle de l'air, sont plus rapprochées. Les vibrations du son se transmettent donc beaucoup mieux d'une molécule à une autre. Ainsi l'eau est plus dense que l'air et le son y circule mieux. Pour visualiser une onde, il est possible de lancer un caillou sur un plan d’eau. On observe ensuite des vagues à la surface. Le son se déplace exactement de la même manière mais à des vitesses bien plus élevées. Vitesse du son dans l'air : 340 mètres par seconde – 1224 km/h Vitesse du son dans l'eau : 1500 mètres par seconde – 5 400 km/h - dans l’eau) Plus d'explication sur le son : https://fr.wikipedia.org/wiki/Son_(physique)tps://fr.wikipedia.org/wiki/Son_(physique))
    • Drôle d'air dans mes poumons  + (Les poussières microscopiques présentes daLes poussières microscopiques présentes dans l’air sous forme solide, liquide ou gazeuse (substances chimiques, micro-organismes, pollens, gaz...) sont en général rejetées par l’organisme. Mais certaines d’entre elles arrivent parfois à pénétrer dans les poumons ou à l’intérieur du corps, ce qui peut avoir des conséquences sur la santé. Ainsi certaines maladies moins fréquentes il y a quelques décennies (allergie, asthme...) se sont développées avec l’accroissement des pollutions (industrielles, agricoles, domestiques) liées aux produits de synthèse qui nous entourent (pesticides, produits d’entretien, colles, plastiques...), ces derniers contenant des matières parfois dangereuses pour l’environnement et la santé. Une courte exposition à fortes doses à un ou plusieurs polluants peut entraîner des irritations, des nausées, des intoxications... Une exposition longue durée à faible dose à certaines substances peut quant à elle entraîner des allergies ou des maladies respiratoires (asthme...), voire dans les cas les plus sévères des troubles neurologiques, hormonaux (problèmes de fertilité, d'obésité) ou des risques de cancers. L’influence du tabac : la fumée de cigarette est constituée multitudes de microparticules qui entraînent un dysfonctionnement de l’ensemble respiratoire au fil des années. Les substances nocives et irritantes qu’elle contient diminuent la ventilation, les broches s’obstruent, le tissu pulmonaire perd de son élasticité et diverses pathologies apparaissent : bronchites, infections, asthme, insuffisance respiratoire, voire un cancer.nsuffisance respiratoire, voire un cancer.)
    • Chromatographie et capillarité  + (On peut distinguer deux phénomènes différeOn peut distinguer deux phénomènes différents. Le premier est la montée de l'eau qui entraîne les colorants, le second est la séparation des colorants pendant cette montée. Normalement, la gravité terrestre devrait empêcher l'eau de monter le long de la bande et l'eau devrait plutôt avoir tendance à descendre. Cependant il existe le phénomène de capillarité. Ce phénomène physique entre en jeu dès qu'un liquide et une surface se rencontrent. Les molécules du liquide sont plus ou moins fortement attirées selon le liquide et selon la surface en question. Dans un tube en verre, on peut voir que l'eau monte légèrement plus haut sur les bords, la surface du tube attire l'eau par capillarité. Si le tube en verre est assez fin, il fera monter de l'eau jusqu'à ce que la gravité compense cette attraction par capillarité. Ici, le papier filtre attire l'eau par ce même phénomène et la fait monter. En montant, l'eau entraîne le point coloré avec elle. Le deuxième phénomène est celui qui décompose la séparation des couleurs. Pourquoi les colorants se séparent-ils lors de leur montée? C'est tout simplement parce que tous les colorants n'ont pas la même composition, et que par conséquent ils ne réagissent pas de la même manière. Ainsi les colorants monteront à une vitesse et à une hauteur qui dépendront non seulement de leur réaction avec le papier, mais aussi de leur solubilité dans l'eau. Voilà pourquoi ils se séparent. C'est la chromatographie. Il existe de nombreuses techniques de chromatographie, et leurs applications sont multiples en chimie analytique, en médecine, dans l'industrie ou encore la police scientifique. On peut utiliser ce procédé pour connaître la composition d'un produit inconnu, ou pour rechercher la présence et mesurer la quantité d'une substance dissoute dans une autre. La chromatographie permet par exemple de déterminer la quantité de caféine contenue dans un médicament, de savoir quels acides aminés sont présents dans un aliment, de rechercher des traces d'hydrocarbures dans l'eau d'une zone de baignade ou de prouver si la peinture trouvée sur une scène de crime est la même que celle de la voiture d'un suspect.même que celle de la voiture d'un suspect.)
    • L'oeuf qui flotte  + (Plongé dans l'eau, l’œuf subit deux forcesPlongé dans l'eau, l’œuf subit deux forces, le poids et la poussée d’Archimède. Dans l'eau douce, l’œuf coule, cela signifie qu'il est plus dense que l'eau mais aussi que son poids est supérieur à la poussée d’Archimède.
      '''La poussée d'Archimède est une force qui s'oppose au poids. Elle s'applique sur les objets placés dans un fluide, comme l'eau.'''
      Lorsque l’on rajoute de l’eau saturée en sel, la densité de la solution eau-sel devient plus forte. L'eau devient alors plus dense que l’œuf, et l’œuf se met à flotter.

      Présentation et schéma des trois cas :

      * Premier cas : l’œuf coule dans le liquide qui est l’eau :
      Loeuf qui flotte Archimede coule.jpg



      L’œuf coule dans le liquide, cela signifie que le poids est supérieur à la poussée d’Archimède.

      * Deuxième cas : on rajoute du sel dans l’eau, l’œuf flotte.
      Loeuf qui flotte Archimede flotte.jpg



      L’œuf est au fond du bocal, on rajoute maintenant du sel dans le bocal. Lorsque le sel est rajouté dans l’eau, il se dissout et le mélange eau-sel donne une solution dont la masse volumique varie en fonction de la quantité de sel. La densité de l’œuf est inférieure à la densité de l'eau salée dans le cas présent.

      * Troisième cas : l’œuf reste en sustentation (il reste entre deux eaux) dans la solution :
      L oeuf qui flotte en sustentation.jpg



      La densité de l’œuf est égale à la densité de l'eau salée dans le cas présent.
      ns le cas présent.)
    • Continent plastique  + (Pourquoi certains plastiques flottent et dPourquoi certains plastiques flottent et d'autres non ? Cela dépend de la densité du plastique : pour un même volume de plastique et d'eau, certains morceaux vont être plus ou moins lourds (par rapport à l'eau) selon leur composition. Les morceaux les plus denses iront au fond de la bassine, et les moins denses restent en surface.e, et les moins denses restent en surface.)
    • Planète bleue  + (Sur les 23 parts de gâteaux pour les océanSur les 23 parts de gâteaux pour les océans : - 10 parts seraient pour l’océan Pacifique qui est le plus grand avec 165 millions de km2. Il est plus grand que tous les continents rassemblés! - 6 parts pour l’océan Atlantique avec 106 millions de km2 - 5 parts pour l’océan Indien avec 74 millions de km2 - 1 part pour l’océan Antarctique avec 20 millions de km2 - 1 part pour l’océan Arctique avec 14 millions de km2
      an Arctique avec 14 millions de km2 <br/>)
    • Faire flotter de la pâte à modeler  + (Un corps solide immergé dans un liquide enUn corps solide immergé dans un liquide en équilibre est soumis à deux forces verticales et de sens contraires : son poids (P) et la poussée d’Archimède (F). Trois cas peuvent se présenter : #Le poids est plus grand que la poussée d’Archimède. Le corps va couler. #Le poids est plus petit que la poussée d’Archimède. Le corps va flotter #Le poids est égal à la poussée d’Archimède. Le corps va rester entre deux eaux. Formule de la poussée d'Archimède PA =  ρfluide  x V x g      * PA= Poussée d'Archimède *  ρfluide = masse volumique du liquide déplacé * V = volume du liquide déplacé * g= gravité La gravité sur Terre est égale à 9,807 m/s-2, , c'est la force qui nous attire vers le centre de la Terre. Durant l'expérience nous allons surtout jouer sur le paramètre "volume du liquide déplacé" en modifiant la forme de la pâte. Pour avoir une plus grande poussée d'Archimède, il faut augmenter le volume du liquide déplacé, ce qui revient à augmenter la surface immergée. En creusant et en étirant l'objet, nous augmentons la surface immergée. surface immergée. En creusant et en étirant l'objet, nous augmentons la surface immergée.)
    • Le jet d'eau parfait  + (<div class="annotatedImageDiv" typeof="
      Flèches qui se dirigent dans tous les sens
      Flèches qui ne se dirigent pas dans le même sens




      '''Pour expliquer ce phénomène :''' Deux schémas représentant les deux comportements de l'eau observés pendant l'expérience.

      *Dans le premier schéma, on voit que les flèches qui représentent le mouvement des molécules qui compose l'eau se dirigent toutes dans le même sens. C'est le cas dans la première image de l'étape 4 : le jet d'eau parait figé et le molécules d'eau se dirigent dans le même sens.
      *Dans le second schéma, on voit que les flèches se dirigent dans des sens différents. C'est le cas dans la seconde image de l'étape 4 : le jet d'eau n'est plus figé et parfait, les gouttelettes vont dans tous les sens. Il y a des turbulences.
      )
    • Un coup de pouce pour la biodiversité  + (<nowiki><u>'''Quelques exemple'''Quelques exemples de dispositifs et mesures'''

      '''*Champs/ zones agricoles''' :

      - replanter/entretenir des haies, créer talus et fossés,

      - favoriser les petites parcelles agricoles

      - utiliser le couvert végétal en dehors des périodes de culture pour ne pas laisser des terres à nu (plantes qui limitent le ruissellement et pompes les nitrates : moutarde, phacélie...)


      '''*Rivières et zones humides'''

      - restaurer/recréer/protéger des zones humides,

      - laisser les berges et fonds de rivière dans leur état naturel (ex : maintenir les zones de graviers pour la ponte des truites et autres espèces, les zones ombragées, favoriser la diversité des profondeurs, courants, la présence de méandres...)

      - installer un crapauduc # sous la route pour permettre aux crapauds de migrer d’une zone humide à l’autre


      * '''Bois et chemins de campagne'''

      - maintenir/ ne pas bétonner ou remplacer par des routes les chemins de terre qui circulent entre les champs et les bois, (couplage possible avec dessous)

      - interdire la circulation de voitures et motos sur ces voies (qui servent aussi aux tracteurs) (vignette panneaux interdiction circulation)

      - installer des grillages le long des routes traversant les bois pour éviter les traversées des animaux sauvages et les accidents, les orienter jusqu’aux ponts, tunnels et passerelles adaptés


      * '''Jardins partagés et jardins privés (dont potagers)''' :

      - laisser un tas de végétaux /de bois avec ouvertures pour hérissons et autres petits mammifères,

      - limiter le nombre de tontes de pelouses,

      - laisser des zones en friche (jamais tondues pour favoriser l'installation des plantes et attirer les pollinisateurs),

      - ne pas tailler les haies et buissons entre mars et août (période de nidification des oiseaux),

      - installer des hôtels à insectes, mangeoires et nichoirs (pour oiseaux et petits animaux), montrer des exemples de dispositifs « faits maison » avec du matériel récupéré,

      - installer/entretenir une petite mare

      - planter des espèces locales de fleurs riches en nectar/pollen pour attirer les pollinisateurs (citer des exemples ! Romarin, lavande, ciboulette...)

      - potager : planter variétés locales et espèces sauvages auxiliaires (limitent l’usage de phytosanitaires, repoussent les parasites ou attirent des insectes qui les éliminent)

      - utiliser la lutte biologique (ex : larves coccinelles qui mangent pucerons)

      - utiliser du couvert végétal (paillage)

      - utiliser des engrais et traitements naturels (compost, purin d’ortie…) plutôt que des produits phytosanitaires

      - sensibiliser le public à l’observation des espèces, animer des projets de sciences participatives, des ateliers de jardinage sans phytosanitaires, de fabrication de mangeoires** et nichoirs avec du matériel de récupération...


      ''**N.B : les ornithologues, scientifiques ou amateurs passionnés, sont actuellement très partagés au sujet des périodes auxquelles les mangeoires à oiseaux peuvent être utiles aux espèces. Une partie de la communauté ornithologique pense qu'il faut fournir de la nourriture aux oiseaux seulement en période hivernale, lorsque les sources de nourriture se raréfient, et qu'étendre le nourrissage au delà de cette période risque de perturber l'instinct des oiseaux, leur capacité à trouver de la nourriture ou leurs migrations. L'autre parrie de la communauté pense au contraire que fournir toute l'année de la nourriture aux oiseaux dans des mangeoires contribue à limiter les effets de la disparition rapide des sources de nourriture et d'abris pour les oiseaux, et à maintenir une plus grande diversité d'espèces dans les zones où elles sont les plus vulnérables (dans certains pays, le nourrissage est recommandé toute l'année). En France, à ce jour, cette question fait encore débat parmi les spécialistes et les passionnés, et il n'est pas possible d'affirmer avec certitude s'il vaut mieux garnir les mangeoires uniquement en hiver ou toute l'année.''


      '''* Centre-ville :'''

      - favoriser les murets de pierre et les espèces de rocaille, pavés végétalisés, ne plus désherber ou utiliser des techniques sans produits polluants (désherbage thermique)


      '''* Littoral :'''

      - ne pas ramasser la laisse de mer sur l’estran

      - sensibiliser le public aux bonnes pratiques de pêche à pied (tailles minimales de capture, retournement des blocs, outils de pêche non destructeurs…)

      - dunes : créer des sentiers protégés et installer des ganivelles ou des cordons pour éviter le piétinement.
      lt;br /><br /><br />'''* Littoral :'''<br /><br />- ne pas ramasser la laisse de mer sur l’estran<br /><br />- sensibiliser le public aux bonnes pratiques de pêche à pied (tailles minimales de capture, retournement des blocs, outils de pêche non destructeurs…)<br /><br />- dunes : créer des sentiers protégés et installer des ganivelles ou des cordons pour éviter le piétinement.</nowiki>)
    • La machine à vapeur  + (<nowiki>Dans la cocotte, l'eau en chDans la cocotte, l'eau en chauffant passe d'un état liquide à un état gazeux et occupe '''plus de volume''' qu'à l'état liquide.

      A l'état gazeux l'eau est '''compressible''' tout comme quand elle est dans un état liquide.


      L'eau à l'état gazeux est compressée dans la cocotte, car elle occupe plus de volume. La pression devient plus importante à l'intérieur qu'à l'extérieur de la cocotte. Au moment où l'on ouvre la soupape de la cocotte on crée une '''dépression'''. C'est à dire que la pression à l'intérieur de la coquotte (produite par la vapeur) tend à s'équilibrer avec la pression de l'air à l'extérieur de la cocotte. On peut dire aussi, que '''la pression diminue à l'intérieur de la cocotte.'''

      Mais comme le volume d'air qui nous entoure est beaucoup plus important que le volume d'air dans la cocotte, on considère que l'intérieur revient à l'équilibre avec la pression atmosphérique au bout d'un certain temps.


      Mais revenons à nos moutons ! Lorsque l'on ouvre la soupape, les fluides rentrent en mouvement pour que la pression s'équilibre. Ce mouvement de fluide (la vapeur d'eau qui sort de la cocotte) allant en contact avec la pal de l'hélice va créer une pression de surface sur la pale. Cette pale va indirectement transmettre les efforts à l'arbre moteur qu'elle va faire entrer en rotation.




      *Que se passe t-il dans un moteur électrique à courant continue'''**''' (à aimant permanent) ?


      ** Qu'on appelle aussi dynamo ou encore alternateur




      Le moteur à courant continue se compose d'un aimant permanent, '''le stator''' (c'est la partie fixe, statique du moteur). Ce stator avec ses deux pôles entoure une partie mobile, l'arbre moteur aussi appelé le '''rotor''' (c'est la partie qui est en rotation). Ce rotor est composé de plusieurs '''bobinages''' (par exemple du fil de cuivre).

      *les aimants créent un champs magnétique dans les bobines, qui, lorsqu'elles sont en rotation, provoquent un déplacement d''''électrons''' libres dans le fil. '''C'est ce qu'on appelle : ''de l'électricité.'''''
      créent un champs magnétique dans les bobines, qui, lorsqu'elles sont en rotation, provoquent un déplacement d''''électrons''' libres dans le fil. '''C'est ce qu'on appelle : ''de l'électricité.'''''</nowiki>)
    • Effet de serre  + ('''Le réchauffement climatique est un proc'''Le réchauffement climatique est un processus naturel.''' Les gaz présents dans l'atmosphère filtres les rayons infra-rouges, nous protégeant ainsi naturellement du réchauffement excessif de la planète. Ces rayons sont stoppés pour la plupart par l'atmosphère ou encore les nuages. Néanmoins, tous les rayons infra-rouges ne sont pas stoppés. Bon nombre se réfléchissent sur le sol, ce qui nous permet d'avoir une moyenne de température sur la planète, d'environ 15°C. Certains gaz (CO2, CH4, H2O, ...) présents naturellement dans l'atmosphère, sont aussi produits en grand quantité par l'Homme (transports, agriculutrue intensive, industries, ...). Ces gaz sont responsables de l'accélaration du réchauffement climatique. Ils vont empêcher les infra-rouges, de quitter l'atmosphère lorsqu'ils se sont réfléchis sur le sol de la planète. Emrpisonnant ainsi d'avantage de gaz à effet de serre dans l'atmosphère.nète. Emrpisonnant ainsi d'avantage de gaz à effet de serre dans l'atmosphère.)
    • Tester l'effet de serre avec des glaçons  + ('''Le réchauffement climatique est un proc'''Le réchauffement climatique est un processus naturel.''' Les gaz présents dans l'atmosphère filtres les rayons infra-rouges, nous protégeant ainsi naturellement du réchauffement excessif de la planète. Ces rayons sont stoppés pour la plupart par l'atmosphère ou encore les nuages. Néanmoins, tous les rayons infra-rouges ne sont pas stoppés. Bon nombre se réfléchissent sur le sol, ce qui nous permet d'avoir une moyenne de température sur la planète, d'environ 15°C. Certains gaz (CO2, CH4, H2O, ...) présents naturellement dans l'atmosphère, sont aussi produits en grand quantité par l'Homme (transports, agriculutrue intensive, industries, ...). Ces gaz sont responsables de l'accélaration du réchauffement climatique. Ils vont empêcher les infra-rouges, de quitter l'atmosphère lorsqu'ils se sont réfléchis sur le sol de la planète. Emrpisonnant ainsi d'avantage de gaz à effet de serre dans l'atmosphère.de gaz à effet de serre dans l'atmosphère.)
    • Encre sympathique  + ('''Les liaisons organiques''' sont des lia'''Les liaisons organiques''' sont des liaisons qui, comme pour tous les êtres vivants, contiennent du carbone. Le sucre (dextrose), le beurre, le miel (fructose), le vinaigre (acide acétique) contiennent des liaisons organiques. On appelle '''liaisons inorganiques''' celles qui ne contiennent pas de carbone. L'argile (oxyde d'aluminium) ou le sel de cuisine (chlorure de sodium) contiennent des liaisons non organiques.) contiennent des liaisons non organiques.)
    • Terre Salée  + (Ainsi, l’arbre est un être vivant tout comAinsi, l’arbre est un être vivant tout comme nous, et pour se nourrir, il le fait grâce à ses racines. Celles-ci possèdent d’innombrables petits poils appelés poils absorbants. Ainsi une plus grande surface est en contact avec l’eau du sol, ce qui facilite les échanges. Toutes ces racines lui permettent plusieurs fonctions: *Elles absorbent l’eau et les substances nutritives contenues dans le sol, pour constituer la sève brute, le “sang” vital de l’arbre *Elle stockent des ressources énergétiques pendant la saison hivernale, cela permet la survie au ralenti de l’arbre *Elle lui assurent un ancrage solide dans le sol, pour lui permettre de résister aux intempéries Elles sont enfin le siège d’association avec d’autres organismes vivants présents dans le sol(champignons, bactéries), ce genre d'association est appelée une symbiose et n'est pas indispensable à la vie de l'arbre mais lui offre des opportunité de mieux se nourrir.
      des opportunité de mieux se nourrir.<br/>)
    • Glace douce, glace salée  + (Au pôle nord, il fait très froid, bien moiAu pôle nord, il fait très froid, bien moins de 0°C, pourtant la mer ne gèle pas systématiquement. Pourquoi ? Notamment à cause du '''sel''' que contient l'eau de mer qui empêche la cristallisation. Mais le sel n'en est pas l'unique cause, en effet, il y a aussi les '''courants marins''' qui mouvementent l'eau et l'empêche d'être suffisamment stable pour geler convenablement. Si finalement la tempétature de l'eau est à -1,8°C ou moins suffisamment longtemps et que l'eau est bien stable, la surface de la mer gèle et devient la '''banquise'''... D'ailleurs on pourrait penser que la banquise serait de l'eau salée gelée. Mais en fait non ! Quand l'eau gèle, le sel s'en va dans l'eau liquide du dessous, la glace ne contient donc pas de sel !us, la glace ne contient donc pas de sel !)
    • Le jeu du vivier : la gestion d'un bien commun  + (Dans ce jeu, les poissons sont considérés Dans ce jeu, les poissons sont considérés comme un "bien commun" -ils sont librement accessibles à tout à chacun et exploitables par tous; - ils font l'objet d'une rivalité dans la consommation. Plus une personne exploite ce "bien commun", plus elle réduit les possibilités des autres personnes de l'exploiter et conduit à l'épuisement de la ressource. L'accès libre à ces biens, si on n'y prend pas garde, peut facilement entraîner leur surexploitation et donc leur disparition. Selon Elinore Ostrom, prix Nobel d'économie, une gestion durable des biens communs, au sein d'un territoire implique certaines conditions : - la communauté des exploitants et les règles d'exploitations sont clairement définies, - les personnes concernées peuvent influencer les règles et les modifier, - le respect des règles est surveillé et les infractions sont sanctionnées; - des mécanismes simples pour résoudre les conflits sont mis en place; - les coûts de gestion et d'exploitation sont assurés.de gestion et d'exploitation sont assurés.)
    • Filtration de l'eau  + (En plaçant les filtres les uns à la suite En plaçant les filtres les uns à la suite des autres, on fait passer l'eau dans des espaces de plus en plus fins pour effectuer une filtration mécanique et se débarrasser des débris des plus gros aux plus petits. Ce mécanisme de filtration mécanique peut être complété par une filtration chimique, basée sur le principe de l'adsorption : il s'agit de la fixation de certains éléments chimiques à un matériau solide. Ici cette étape de filtration chimique est réalisée avec du charbon actif, qui capture certains polluants organiques : l'odeur du vinaigre et le colorant sont en partie fixés par la couche de charbon actif. Ajouter un matériau adsorbant permet d'améliorer la filtration car on pourra éliminer plus d'éléments polluants qu'avec la seule filtration mécanique. Plus la couche filtrante est épaisse et plus l'eau mettra du temps à la traverser, donc plus le charbon actif pourra piéger de polluants, et donc mieux l'eau sera nettoyée.
      et donc mieux l'eau sera nettoyée. <br/>)
    • Observer et jouer avec un microscope USB  + (Il existe plusieurs 3 types principaux de Il existe plusieurs 3 types principaux de microscopes : === [https://fr.wikipedia.org/wiki/Microscope_optique Microscope optique]. === Cette technique consiste à grossir l'[https://fr.wikipedia.org/wiki/Image_(optique) image optique] d'un objet de petites dimensions en plaçant, entre l'objet et le détecteur, un microscope optique. Cet appareil utilise des [https://fr.wikipedia.org/wiki/Lentille_optique lentilles optiques] pour former l'image en contrôlant le faisceau lumineux et (sur certains microscopes) pour illuminer l'échantillon. Le fait que l'on puisse modifier de nombreux paramètres (type d'éclairage, [https://fr.wikipedia.org/wiki/Polarisation_(optique) polarisation], filtrage spectral, filtrage spatial...) confère de nombreuses possibilités à cette technique d'imagerie ([https://fr.wikipedia.org/wiki/Microscopie_confocale microscopie confocale], [https://fr.wikipedia.org/wiki/Microscopie_%C3%A0_fluorescence microscopie à fluorescence]...) Les meilleurs microscopes optiques sont limités à un [https://fr.wikipedia.org/wiki/Grossissement_optique grossissement] de 2000 fois.
      === [https://fr.wikipedia.org/wiki/Microscope_%C3%A9lectronique Microscope électronique]. === En microscopie électronique l'irradiation de l'échantillon se fait avec un faisceau d'électrons. Les microscopes électroniques utilisent des [https://fr.wikipedia.org/wiki/Lentille_%C3%A9lectrostatique lentilles électrostatiques] et des [https://fr.wikipedia.org/wiki/Lentille_magn%C3%A9tique lentilles magnétiques] pour former l'image en contrôlant le faisceau d'électrons et le faire converger sur un plan particulier par rapport à l'échantillon. Les microscopes électroniques ont un plus grand [https://fr.wikipedia.org/wiki/Pouvoir_de_r%C3%A9solution pouvoir de résolution] que les microscopes optiques et peuvent obtenir des [https://fr.wikipedia.org/wiki/Grossissement_optique grossissements] beaucoup plus élevés allant jusqu'à 2 millions de fois. Les deux types de microscopes, électronique et optique, ont une résolution limite, imposée par la [https://fr.wikipedia.org/wiki/Longueur_d%27onde longueur d'onde] du rayonnement qu'ils utilisent. La résolution et le grossissement plus grands du microscope électronique sont dus au fait que la longueur d'onde d'un électron (longueur d'onde de [https://fr.wikipedia.org/wiki/Louis_de_Broglie de Broglie]) est beaucoup plus petite que celle d'un [https://fr.wikipedia.org/wiki/Photon photon] de lumière visible.
      === [https://fr.wikipedia.org/wiki/Microscopie_%C3%A0_sonde_locale Microscopie à sonde locale]. === Cette technique d'imagerie, plus récente, est assez différente des deux premières puisqu'elle consiste à approcher une sonde (pointe) de la surface d'un objet pour en obtenir les caractéristiques. Les microscopes à sondes locales peuvent déterminer la [https://fr.wikipedia.org/wiki/Topographie topographie] de la surface d'un échantillon ([https://fr.wikipedia.org/wiki/Microscope_%C3%A0_force_atomique microscope à force atomique]) ou encore la [https://fr.wikipedia.org/wiki/Densit%C3%A9_d%27%C3%A9tats_%C3%A9lectroniques densité d'états électroniques] de surfaces conductrices ([https://fr.wikipedia.org/wiki/Microscope_%C3%A0_effet_tunnel microscope à effet tunnel]). Par ailleurs, l'utilisation d'une sonde peut permettre de collecter des [https://fr.wikipedia.org/wiki/Onde_%C3%A9vanescente ondes évanescentes] confinées au voisinage d'une surface ([https://fr.wikipedia.org/wiki/Microscope_optique_en_champ_proche microscope optique en champ proche]). La sonde balaye la surface de l'échantillon à représenter ce qui impose l'observation de surfaces relativement planes. Suivant le microscope utilisé la résolution spatiale peut atteindre l'échelle atomique.
      résolution spatiale peut atteindre l'échelle atomique.)
    • La dilatation des océans  + (L'eau est un élément chimique dit : ''therL'eau est un élément chimique dit : ''thermodynamique''. C'est à dire qu'il est soumis au changement lorsque qu'il subit un changement de température. L'eau est connue sous 3 différents états : la glace, le liquide, la vapeur. Lors du passage de l'un à l'autre de ces états, les molécules qui composent l'eau vont s'agiter, s'agglomérer... à cause du changement de température. La dilatation de l'eau ne s'effectue pas uniquement à cause de la chaleur. Elle s'effectue également lorsque l'eau passe de l'état liquide à l'état solide (glace). En effet, l'eau à l'état solide prend également plus de place que dans un état liquide.
      de place que dans un état liquide. <br/>)
    • Bulle d'huile  + (La '''densité''' des liquides est mesurée La '''densité''' des liquides est mesurée par rapport à celle de l'eau, dont la valeur est 1. L'huile a une densité d'environ 0.9, elle est donc moins dense que l'eau. L'alcool (éthanol) a une densité encore plus faible qui est égale à environ 0.79. Dans l'expérience, lorsque nous ajoutons l'alcool dans le verre, l'huile reste dans la boîte car elle a une densité plus importante que celle de l'alcool. En effet, c'est le liquide le moins '''dense''' (donc le plus "léger") qui est en contact avec la surface. Par la suite nous ajoutons de l'eau à l'alcool. On peut remarquer que l'eau et l'alcool se mélangent car ils sont parfaitement '''miscibles''', ce qui n'est pas le cas avec l'huile. Au fur et à mesure de l'augmentation de la part d'eau dans le mélange, celui-ci voit sa densité augmenter. Au bout d'un moment, la densité de l'huile et celle du mélange s'équilibrent. L'huile n'est donc plus retenue dans la boîte et "flotte" dans le mélange, sous la forme d'une bulle. L'huile est soumise à deux forces, '''l'attraction terrestre''' et '''la poussée d'Archimède''' exercée par le mélange. Ces deux forces s'équilibrent et font donc "flotter" l'huile. L'huile ne se mélange pas avec l'eau car ses molécules sont composées d'une queue '''hydrophile''' (qui est attirée par l'eau) et d'une tête '''hydrophobe''' (qui rejette l'eau). La partie hydrophobe va donc fuir l'eau. L'huile prend une forme en boule car elle est entourée par le mélange auquel elle ne peut se mélanger, et la forme sphérique est celle qui permet à l'huile d'être le moins possible en contact avec le mélange.moins possible en contact avec le mélange.)
    • Fleur de papier capillaire  + (La capillarité est due à la différence de La capillarité est due à la différence de [https://www.wikidebrouillard.org/wiki/Poivre_fuyard tension superficielle] entre deux liquides non miscibles (c'est à dire qui ne se mélangent pas), ou entre un liquide et l'air, ou encore entre un liquide et un matériau solide poreux. La capillarité est d'autant plus marquée qu'un liquide a une forte tension superficielle, ce qui dépend de sa composition chimique et des conditions ambiantes (température, pression). Un liquide à forte tension superficielle remonte en s'opposant à la gravité dans les matériaux composés de petits tubes très fins (appelés "tubes capillaires"). La progression du liquide s'arrête lorsque la gravité et la pression capillaire s'équilibrent. [http://fr.wikipedia.org/wiki/Capillarit%C3%A9 Source : La capillarité sur Wikipédia]%A9 Source : La capillarité sur Wikipédia])
    • Les pollutions invisibles  + (La molécule du pigment qui colore l'encre La molécule du pigment qui colore l'encre a été modifiée par l'eau chaude, le mélange est alors devenu incolore grâce à la forme basique de l’eau. L’eau est amphotère, c’est à dire qu’elle se comporte en acide en présence de base, et en base en présence d’acide. Ici, le pigment est un acide, donc l’eau adopte un comportement basique et fait disparaître la couleur bleue en modifiant la molécule du pigment. L’eau chaude accélère la réaction. Sans chaleur, la réaction serait beaucoup plus longue. Ici, la chaleur est donc un catalyseur. Dans cette expérience, les molécules modifiées sont sensibles au pH (c'est à dire à l'acidité du milieu). Quand on ajoute le vinaigre, la solution devient acide, et les molécules subissent une nouvelle transformation : elles reprennent leur état d’origine et le mélange est à nouveau bleu. Quand on ajoute un produit basique comme ici le bicarbonate de sodium, il réagit avec le mélange et fait disparaître la couleur de l’encre à nouveau, car on neutralise l’acidité du vinaigre. On obtient ainsi une solution basique, ce qui provoque la disparition de la couleur bleue. Si on ajoute encore du vinaigre, il va se trouver en plus grande quantité que le bicarbonate de sodium (il n'y a plus assez de bicarbonate de sodium pour "occuper" tout le vinaigre). Le vinaigre va donc une fois de plus réagir avec la molécule modifiée, qui retrouvera son état d'origine et va encore colorer le mélange en bleu. La composition des encres bleues effaçables est souvent secrète, et diffère selon les marques. Leur couleur bleue est obtenue avec des dérivés d'aniline, notamment le bleu d'aniline. Les effaceurs vendus dans le commerce contiennent du bisulfite de sodium, qui réagit avec le bleu d'aniline en formant un produit incolore. Il s'agit d'une réaction d'oxydo-réduction. Cette expérience montre que tous les produits contenus dans l’eau ne sont pas forcément visibles. C’est notamment le cas de nombreux polluants, que l’on ne peut détecter qu’en réalisant des analyses. Certains produits, qu’on appelle des réactifs, révèlent la présence de polluants invisibles en provoquant une réaction chimique qui colore l'eau.
      réaction chimique qui colore l'eau. <br/>)
    • La fonte des glaces - 2e méthode  + (La quantité d’eau contenue sous forme liquLa quantité d’eau contenue sous forme liquide et solide (eau + glaçons) dans le premier pot ne change pas. Les glaçons, en fondant, n'ajoutent pas d'eau dans le pot, et ne font pas augmenter le volume d’eau contenu dans le pot. On remarque que les glaçons dépassent un peu au dessus de la surface. La glace occupe un peu moins de place une fois liquide l'eau des glaçons, redevenue liquide, occupe la même place que le celle que les glaçons occupaient sous l'eau. Dans le second pot, les gouttes d’eau qui s’écoulent des glaçons placés dans l’entonnoir ajoutent un volume d’eau supplémentaire au pot déjà plein à ras bord. Il déborde donc rapidement, puisque le pot ne peut pas contenir plus d'eau.ue le pot ne peut pas contenir plus d'eau.)
    • Apollo thé  + (La thermodynamique propose que, dans la maLa thermodynamique propose que, dans la matière à l'état gazeux, il existe une relation de proportionnalité entre d'un côté la pression P et le volume V et de l'autre côté la quantité de matière n et la température T : PV∝nT, ou P*V = n*T*R (R étant une constante).

      Sachant que la quantité de matière est directement proportionnelle à la masse.


      Plus l’air est chaud, moins il est dense : pour une même quantité de matière d’air, le volume sera plus élevé... Ou pour un même volume d'air, celui-ci sera constitué de moins d'espèce chimique, donc sera moins. Quand l’air est assez chaud, il devient telle plus léger que l’air ambiant qu'il peut faire décoller notre sachet de thé !
      Zoom sur un sachet de thé : on distingue bien les fibres du papier
      Entre les fibres du papier d'un sachet de thé, il y a des vides qui peuvent être occupés par de l’air. C'est cet air emprisonné à l’intérieur de ces fibres qui va chauffer, diminuer de densité, et finir par rendre tout le sachet plus léger que l'air ambiant quand le sachet brûlera.
      brûlera.)
    • Allumettes qui bougent toutes seules  + (Le bois est composé de fibres cylindriquesLe bois est composé de fibres cylindriques. L'eau pénètre dans le bois et comble les espaces entre les fibres grâce au phénomène de capillarité: c'est la capacité d'un liquide à pouvoir remonter une surface même contre la gravité (la force qui nous attire vers le centre de la Terre). La capillarité est due à la différence de [[Poivre fuyard|tension superficielle]] entre deux liquides non miscibles (c'est à dire qui ne se mélangent pas), ou entre un liquide et l'air, ou encore entre un liquide et un matériau solide poreux. Un liquide à forte tension superficielle (comme l'eau) remonte en s'opposant à la gravité dans les matériaux composés de petits tubes très fins (appelés "tubes capillaires"). La progression du liquide s'arrête lorsque la gravité et la pression capillaire s'équilibrent. Lorsque le bois d'une allumette gonfle, elle se déplie pour reprendre sa forme initiale : elle pousse sur les autres et ainsi, contribue à agrandir l'étoile. D'autres expériences permettent d'observer ce phénomène, vous les retrouverez dans "Vous aimerez aussi" ci-dessous.erez dans "Vous aimerez aussi" ci-dessous.)
    • Nuage en Bouteille  + (Le passage de l’eau de l’état gazeux (vapeLe passage de l’eau de l’état gazeux (vapeur d’eau) à l’état liquide (gouttelettes d’eau) est appelé condensation. Ici la condensation est provoquée par le changement de pression (quand on relâche la bouteille). La condensation ne peut se produire que si les particules d’eau peuvent tourner autour d’un support, qu’on appelle « noyau de condensation ». L’air contient toujours des particules en suspension, ce sont elles qui jouent le rôle de noyaux de condensation dans cette expérience. Lorsqu’on place une allumette que l’on vient d’éteindre dans la bouteille, cela ajoute un grand nombre de particules dans l’air et offre un plus grand nombre de noyaux de condensation pour la formation de gouttelettes, d’où la création d’un plus gros nuage.es, d’où la création d’un plus gros nuage.)
    • Thaumatrope  + (Les mécanismes de la perception visuelle eLes mécanismes de la perception visuelle et le concept de persistance rétinienne sont aujourd'hui très discutés, et les scientifiques ne sont pas tous d'accord. D'autres phénomènes plus complexes pourraient entrer en jeu, comme l'effet phi. Quelques liens : [https://fr.wikipedia.org/wiki/Thaumatrope Comprendre le thaumatrope sur wikipédia] [https://fr.wikipedia.org/wiki/Effet_phi Comprendre l'effet phi sur wikipédia]
      mprendre l'effet phi sur wikipédia] <br/>)
    • La plante qui respire  + (Les rayons du soleil arrivent sur la cime Les rayons du soleil arrivent sur la cime de l’arbre, frappent les feuilles et là, l’arbre possède un produit qui s’appelle la chlorophylle ce qui donne la couleur verte aux feuilles (Atelier 1) et grâce à ce produit, l’énergie qu’apporte les rayons du soleil, l’eau qui arrive, le gaz carbonique qui arrive par les petits troues qui rentre par la feuille (les stomates) et tout ceux-ci se rencontrent.

      La respiration d'une feuille




      Les plantes respirent grâce à ces orifices situés sur la face inférieure des feuilles et parfois supérieure. Ces stomates ont peuvent s’ouvrir plus ou moins, pour réguler sa repsiration, sous l’influence de la lumière et de la sécheresse. Mais, les stomates ne sont jamais totalement fermés et les échanges gazeux ne sont jamais inexistants.

      Et l’hiver, l’arbre peut-il respirer sans feuilles?

      Les feuilles sont les principaux organes pour la respiration, mais celle-ci ce fait également les tiges herbacées(branche) et les tiges lignifiées(tronc) et par les racines.

      C’est grâce à cette respiration par d’autre stomates de l’arbre que les arbre à feuillage peuvent respirer durant l’hiver.

      Ainsi la respiration des plantes correspond à l’absorption de gaz carbonique (CO2) et à un rejet d'oxygène (O2) mais aussi de l’eau (H20).

      Jour et nuit, les cellules de l’arbre absorbent du gaz carbonique et rejettent de l’oxygène : c’est la respiration.
      rbre absorbent du gaz carbonique et rejettent de l’oxygène : c’est la respiration.)
    • Flasher le petit bot  + (Pour aller plus loin, voici 2 petits livrets * https://github.com/julienrat/petitbot/blob/master/guide_peda.pdf * https://github.com/julienrat/petitbot/blob/master/manuel_tech_petitbot.pdf)
    • Imagine... ta campagne  + (Pour développer son territoire et l'adaptePour développer son territoire et l'adapter à l'évolution des besoins et des priorités, en particulier face à l'augmentation des évènements liés au changement climatique global (pollution, pluies plus intenses et inondations, pics de chaleur...), il est essentiel de travailler collectivement, en recueillant l'avis et les propositions des experts comme des citoyens et en définissant des priorités : l'environnement, la santé, l'emploi... La gestion durable d'une ville consiste mettre en place des mesures qui permettent de répondre aux besoins et aux attentes des habitants, mais aussi d'assurer des revenus économiques (tourisme, emploi...) sans dégrader l'environnement ou le cadre de vie, ni épuiser les ressources naturelles (eau, terres cultivables...). Tous les experts et les citoyens ne sont pas toujours du même avis et n'ont pas les mêmes priorités, et une commune n'a pas toujours le budget ou les équipements, ou l'espace disponible pour mettre en place les solutions les plus efficaces. Il est donc souvent compliqué voire impossible de satisfaire tout le monde, et il faut parfois faire des compromis !, et il faut parfois faire des compromis !)
    • Imagine... ton bord de mer  + (Pour développer son territoire et l'adaptePour développer son territoire et l'adapter à l'évolution des besoins et des priorités, en particulier face à l'augmentation des évènements liés au changement climatique global (pollution, pluies plus intenses et inondations, pics de chaleur...), il est essentiel de travailler collectivement, en recueillant l'avis et les propositions des experts comme des citoyens et en définissant des priorités : l'environnement, la santé, l'emploi... La gestion durable d'une ville consiste mettre en place des mesures qui permettent de répondre aux besoins et aux attentes des habitants, mais aussi d'assurer des revenus économiques (tourisme, emploi...) sans dégrader l'environnement ou le cadre de vie, ni épuiser les ressources naturelles (eau, terres cultivables...). Tous les experts et les citoyens ne sont pas toujours du même avis et n'ont pas les mêmes priorités, et une commune n'a pas toujours le budget ou les équipements, ou l'espace disponible pour mettre en place les solutions les plus efficaces. Il est donc souvent compliqué voire impossible de satisfaire tout le monde, et il faut parfois faire des compromis !, et il faut parfois faire des compromis !)
    • Imagine... ta ville  + (Pour développer son territoire et l'adaptePour développer son territoire et l'adapter à l'évolution des besoins et des priorités, en particulier face à l'augmentation des évènements liés au changement climatique global (pollution, pluies plus intenses et inondations, pics de chaleur...), il est essentiel de travailler collectivement, en recueillant l'avis et les propositions des experts comme des citoyens et en définissant des priorités : l'environnement, la santé, l'emploi... La gestion durable d'une ville consiste mettre en place des mesures qui permettent de répondre aux besoins et aux attentes des habitants, mais aussi d'assurer des revenus économiques (tourisme, emploi...) sans dégrader l'environnement ou le cadre de vie, ni épuiser les ressources naturelles (eau, terres cultivables...). Tous les experts et les citoyens ne sont pas toujours du même avis et n'ont pas les mêmes priorités, et une commune n'a pas toujours le budget ou les équipements, ou l'espace disponible pour mettre en place les solutions les plus efficaces. Il est donc souvent compliqué voire impossible de satisfaire tout le monde, et il faut parfois faire des compromis !, et il faut parfois faire des compromis !)
    • Qu'est-ce que les Biocides  + (Si une partie des biocides présentés ici sSi une partie des biocides présentés ici sont aujourd'hui interdits, ils ont tous été extrêmement utiles lorsqu'on les a découvert ! Ils ont eu un effet très bénéfique sur l'hygiène et la production alimentaire, en protégeant les populations des famines. C'est pourquoi on a souvent détourné le regard sur leur impact. D'ailleurs, certains sont encore utilisés aujourd'hui, malgré toutes les connaissances sur leurs effets. Le DDT par exemple, est jugé comme un « mal nécessaire » par l'OMS pour éviter la propagation de maladies tropicales. Aujourd'hui, les biocides d'origine chimique sont partout dans l'environnement. On les retrouve notamment dans l'alimentation (que ce soit les légumes ou la viande) et dans l'eau potable [3]. Des quantités maximales ont été établies pour la plupart des aliments pour s'assurer que la population ne soit pas intoxiquée. Cependant, on s'interroge encore sur les effets cocktails, c'est-à-dire le mélange de plusieurs molécules, même à petites doses.plusieurs molécules, même à petites doses.)
    • Fleurs et insectes pollinisateurs  + (Sur la base de bénéfices réciproques, les Sur la base de bénéfices réciproques, les relations des plantes à fleurs avec leurs pollinisateurs se sont perfectionnées et diversifiées, ce qui donne la grande diversité actuelle. Tous les insectes ne butinent pas les mêmes fleurs : certains pollinisent de nombreuses plantes, d'autres ne sont adaptés qu'à quelques espèces. Trois critères influent sur les relations plantes/insectes. La forme des fleurs conditionne le type d'insecte qui prélève le nectar, et la composition en sucre du nectar et du pollen influence le choix des plantes visitées par les insectes. '''La pollinisation rend aux humains d’immenses services économiques.''' La production de 84% des espèces cultivées en Europe (incluant la grande diversité de légumes et d’arbres fruitiers) dépend directement de la pollinisation par les insectes. '''À l’échelle de la planète, des études scientifiques estiment que le service « pollinisation » offert par le monde animal à l’agriculture vaudrait environ 153 milliards d'euros par an'''. Sans parler de la difficulté et du coût en personnel de la pollinisation si nous devions la faire à la place des insectes pollinisateurs !   Dans la région de l’Hindu Kush (en Himalaya), les pommiers représentent une source de revenus majeure pour les nombreuses familles de paysans. Une grande diversité d’abeilles étaient naturellement acclimatées à cette région de montagne. Or une trop forte utilisation des pesticides les fit disparaître, ce qui fit chuter de moitié la production de pommes. Les habitants durent alors polliniser les pommiers de leurs vergers à la main pour assurer la production de fruits : il fallu une vingtaine de personnes pour polliniser fleur après fleur une centaine de pommiers, travail habituel de 2 ruches ! Mais une stratégie écologique plus durable fut également testée et adoptée : limiter les traitements de pesticides et introduire l'apiculture, jusque-là inconnue dans cette région ! Des colonies d’abeilles domestiques, mais aussi des abeilles locales et adaptées au climat de la région furent introduites, ce qui permit à la production de pommes de redémarrer.t à la production de pommes de redémarrer.)
    • Cristaux de sel  + (L'abbé René-Just Haüy avait remarqué la coL'abbé René-Just Haüy avait remarqué la constance des formes des individus d'une espèce végétale. Alors que les cristaux, dont la composition ne change jamais, présentaient des formes indéfiniment variables. Il observa qu'en cassant des cristaux de calcite de différentes formes, les fragments obtenus avaient toujours la même forme géométrique. L'abbé Haüy imagina que chacune des formes observées était composée d'une multitude de solides infiniment petits, ayant chacun les mêmes propriétés géométriques, physiques et chimiques que la forme elle-même. Un cristal apparaît donc constitué par un agencement de briques élémentaires, tout comme une maison peut être constituée par un agencement de briques. De la même manière, par agencement de briques, toutes identiques, on peut construire une cathédrale ou une maison. Encore plus... Les travaux de Haüy montrent que plusieurs formes de briques élémentaires sont nécessaires pour décrire l'ensemble des cristaux. Certaines formes sont simples, comme le cube, alors que d'autres semblent plus compliquées, comme le rhomboèdre. Haüy reconnut 6 genres de briques élémentaires, mais aujourd'hui on en admet 7. On parle des 7 systèmes cristallins : cubique, quadratique, orthorhombique, monoclinique, triclinique, rhomboédrique, hexagonal.ue, triclinique, rhomboédrique, hexagonal.)